Skip to main content

Advertisement

Log in

Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV–vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30–60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm−1. In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I–IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6 %, 76.7 % and 100 %, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9 %, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarthi N, Murugan K (2010) Larvicidal and smoke repellent activities of Spathodea campanulata P. Beauv. against the malarial vector Anopheles stephensi lis (Diptera: Culicidae). J Phytol 2:61–69

    Google Scholar 

  • Alder HL, Rossler EB (1977) Introduction to probability and statistics, 6th edn. Freeman, San Francisco, p 246

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano-Metal Chem 35:19–26

    Article  CAS  Google Scholar 

  • Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem Bark. Dig J Nanomater Biostruct 5:369–372

    Google Scholar 

  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  • Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol Online 47:44–51

    Google Scholar 

  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. doi:10.1007/s00436-014-4183-3

    Google Scholar 

  • Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res. doi:10.1007/s00436-014-4267-0

    Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res. doi:10.1007/s00436-014-4286-x

    Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res. doi:10.1007/s00436-015-4336-z

    Google Scholar 

  • Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus Hybrida (Safeda) leaf. Dig J Nanomater Biostruct 4:537–543

    Google Scholar 

  • Elumalai EK, Prasad TNVKV, Hemachandran J, Therasa SV, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharmacol Sci Res 2:549–554

    CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine Nanotechnol Biol Med 6:e103–e109

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Book  Google Scholar 

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  • Jeyabalan D, Murugan K (1999) Effect of certain plant extracts against the mosquito Anopheles stephensi Liston. Curr Sci 76:631–633

    Google Scholar 

  • Khanna AK, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipidemic rats. J Ethnopharmacol 82:19–22

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces 76:50–56

    Article  CAS  PubMed  Google Scholar 

  • Murugan K (2006) Tsunami relief work—biopesticide spray operations—a case study. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) Geohazards. ECI Symposium Series, vol. P7. http://services.bepress.com/eci/geohazards/39

  • Murugan K, Babu R, Jeyabalan D, Senthil Kumar N, Sivaramakrishnan S (1996) Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J Ent Res 20:137–139

    Google Scholar 

  • Murugan K, Vahitha R, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector. Culex quinquefasciatus. Ann Med Entomol 12:11–23

    Google Scholar 

  • Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti Insecta: Diptera: Culicidae). Bioresour Technol 98:198–201

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Mahesh Kumar P, Kovendan K, Amerasan D, Subrmaniam J, Shiou HJ (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111:1757–1769

    Article  PubMed  Google Scholar 

  • Naresh Kumar A, Murugan K, Baruah I, Madhiyazhagan P, Nataraj T (2012) Larvicidal potentiality, longevity and fecundity inhibitory activities of Bacillus sphaericus (Bs G3-IV) on vector mosquitoes, Aedes aegypti and Culex quinquefasciatus. J Entomol Acarol Res 44:79–84

    Google Scholar 

  • Nathan SS, Kalaivani K, Murugan K (2005) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–80

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2014) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res. doi:10.1007/s11356-014-3560-x

    Google Scholar 

  • Priyadarshini AK, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

    Article  PubMed  Google Scholar 

  • Rai A, Singh A, Ahmad M, Sastry (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22:736–741

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajesh W, Niranjan S, Jaya R, Vijay D, Sahebrao B, Kashid (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) pierre. Nano-Micro Lett 2:2106–2113

    Google Scholar 

  • Rizk AFM (1987) The chemical constituents and economic plants of Euphorbiaceae. Bot J Linn Soc 94:293–326

    Article  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Article  PubMed  Google Scholar 

  • Saini HK, Sharma RM, Bami HL, Sidhu KS (1986) Preliminary study on constituents of mosquito coil smoke. Pesticides 20:15–18

    CAS  Google Scholar 

  • Salam HA, Rajiv P, Kamaraj M, Jagadeeswaran P, Gunalan S, Sivaraj R (2012) Plants: green route for nanoparticles synthesis. Int Res J Biol Sci 1:85–90

    Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432

    Google Scholar 

  • Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomedicine 5:743–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the Geranium plant. Appl Nanotechnols 1:69–77

    Google Scholar 

  • Song YJ, Jang HK, Kim SB (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Stuart BH (2002) Polymer analysis. Wiley, United Kingdom

    Google Scholar 

  • Sundaravadivelan C, Nalini Padmanabhan M, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera, Culicidae). Parasitol Res 112:303–311

    Article  PubMed  Google Scholar 

  • Thyagarajan SP, Subramanian S, Thirunalasundari T, Venkateswaran PS, Blumberg BS (1988) Effect of Phyllanthus amarus on chronic carriers of hepatitis B virus. Lancet 2:764–766

    Article  CAS  PubMed  Google Scholar 

  • Unander DW, Webster GL, Blumberg BS (1991) Uses and bioassays in Phyllanthus (Euphorbiaceae): a compilation, II. The subgenus Phyllanthus. J Ethnopharmacol 34:97–133

    Article  CAS  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Hot SL (2014a) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2014b) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  PubMed  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101

    Article  CAS  PubMed  Google Scholar 

  • Vellasamy S, Hariharan H, Venkatesh TS, Jayaprakashvel M (2014) Larvicidal and antimicrobial activities of silver nanoparticles synthesized using marine fluorescent pseudomonads. BMC Infect Dis 14:25

    Article  Google Scholar 

  • WHO (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. WHO/VBC/81–807. WHO, Geneva

    Google Scholar 

  • WHO (2012) Handbook for integrated vector management. World Health Organization, Geneva

    Google Scholar 

  • Yeh SF, Hong CY, Huang YL, Liu TY, Choo KB, Chou CK (1993) Effect of an extract from Phyllanthus amarus on hepatitis B surface antigen gene expression in human hepatoma cells. Antivir Res 20:185–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Kadarkarai Murugan is grateful to the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013, for providing financial support. Giovanni  Benelli is supported by a Mis. 124 MODOLIVI Grant. Funds were also provided by the Italian Ministry of Education, University and Research (MIUR). Funds were also provided by the Italian Ministry of Education, University and Research (MIUR). Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 21373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, U., Murugan, K., Benelli, G. et al. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114, 1551–1562 (2015). https://doi.org/10.1007/s00436-015-4339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4339-9

Keywords

Navigation