Skip to main content
Log in

Identification and characterization of a cathepsin-L-like peptidase in Eimeria tenella

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in birds. Cysteine protease is a major virulence factor in parasitic protozoa, and it may be a suitable chemotherapeutic target and vaccine candidate molecule. A 100 amino acid (aa.) partial sequence of cathepsin L, which is a cysteine protease, was reported by Katrib et al. (Ac. No. CDJ41293) (2012). A 219 aa. sequence was reported by Reid et al. (Ac. No. AFV92863) (2013). However, the open reading frame (ORF) was not reported. In this study, a full sequence of a cathepsin-L-like peptidase in Eimeria tenella (EtcatL) was obtained and its biochemical characterizations and expression profiles were analyzed across different stages of the parasite’s life cycle. Results showed that the EtcatL gene encodes a protein 470 aa. in length, with 47 and 49 % identity to Toxoplasma gondii and Eimeria acervulina. Considering the close phylogenetic relationship, TgcatL (PDB. ID 3F75) was selected for use as a template for homology modeling with quality factors of 90.9. Gelatin SDS-PAGE showed it to exert protease activity at ≈38 and ≈26 kDa. Further analysis showed the kinetic parameters of the recombinant peptidase to be K m  = 8.9 μM and V max = 5.7 RFU/s μM at pH 5.5 containing 10 mM dithiothreitol (DTT) in the reaction matrix, and the IC50 value of E64 was 65.32 ± 3.02 nM. The recombinant protein was active from 25 to 50 °C, with optimal activity at 42 °C. The RT-PCR and Western blot results showed it to be expressed mainly at the endogenous stages and the initial phase of the sporulation. The protective experiment showed that chickens immunized with 100 and 200 μg rEtcatL had reduction of weight loss values 48.7 and 57.9 % those of infected controls, respectively. Their reduction of lesion scores (RLS) were 25.0 and 47.2 % that of control chickens, and relative oocyst production (ROP) was 39.6 and 15.5 % that of control chickens. These results indicate that the EtcatL can be used as an effective immunogen, and further studies are needed to enhance its potential as a vaccine candidate molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Abdul Hafeez M, Akhtar M, Hussain I (2006) Protective effect of egg-propagated Eimeria tenella (local isolates) gametocytes as vaccine(s) against mixed species of coccidia in chickens. Parasitol Res 98(6):539–544

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HJ, Babbitt PC, Sajid M (2009) The global cysteine peptidase landscape in parasites. Trends Parasitol 25(12):573–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) L-trans-Epoxysuccinyl-leucylamido(4-Guanidino)butane (E-64) and its analogs as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201(1):189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalton JP, Neill SO, Stack C, Collins P, Walshe A, Sekiya M, Doyle S, Mulcahy G, Hoyle D, Khaznadji E, Moire N, Brennan G, Mousley A, Kreshchenko N, Maule AG, Donnelly SM (2003) Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines. Int J Parasitol 33(11):1173–1181

    Article  CAS  PubMed  Google Scholar 

  • De Vendittis E, Castellano I, Cotugno R, Ruocco MR, Raimo G, Masullo M (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol 250(1):156–171

    Article  PubMed  Google Scholar 

  • Dou Z, Carruthers VB (2011) Cathepsin proteases in Toxoplasma gondii. Adv Exp Med Biol 712:49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dou Z, Coppens I, Carruthers VB (2013) Non-canonical maturation of two papain-family proteases in Toxoplasma gondii. J Biol Chem 288(5):3523–3534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188(4):725–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujishima A, Imai Y, Nomura T, Fujisawa Y, Yamamoto Y, Sugawara T (1997) The crystal structure of human cathepsin L complexed with E-64. FEBS Lett 407(1):47–50

    Article  CAS  PubMed  Google Scholar 

  • Fuller AL, McDougald LR (1990) Reduction in cell entry of Eimeria tenella (Coccidia) sporozoites by protease inhibitors, and partial characterization of proteolytic activity associated with intact sporozoites and merozoites. J Parasitol 76(4):464–467

    Article  CAS  PubMed  Google Scholar 

  • Hasnain S, Hirama T, Huber CP, Mason P, Mort JS (1993) Characterization of cathepsin-B specificity by site-directed mutagenesis. Importance of Glu(245) in the S2-P2 specificity for arginine and its role in transition-state stabilization. J Biol Chem 268(1):235–240

    CAS  PubMed  Google Scholar 

  • Huang R, Que XC, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S (2009) The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 164(1):86–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294(5550):2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Jean L, Grosclaude J, Labbe M, Tomley F, Pery P (2000) Differential localisation of an Eimeria tenella aspartyl proteinase during the infection process. Int J Parasitol 30(10):1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Jean L, Pery P, Dunn P, Bumstead J, Billington K, Ryan R, Tomley F (2001) Genomic organisation and developmentally regulated expression of an apicomplexan aspartyl proteinase. Gene 262(1–2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Reid WM (1970) Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol 28(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Katrib M, Ikin RJ, Brossier F, Robinson M, Slapetova I, Sharman PA, Walker RA, Belli SI, Tomley FM, Smith NC (2012) Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 13:685–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K (2004) Role of proteases in host cell invasion by Toxoplasma gondii and other apicomplexa. Acta Trop 91(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Yamamoto D, Matsumoto K, Inoue M, Ishida T, Mizuno H, Sumiya S, Kitamura K (1992) Crystal-structure of papain-E64-c complex binding deversity of E64-c to papain S(2) and S(3) subsites. Biochem J 287:797–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klemba M, Goldberg DE (2002) Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71:275–305

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1989) The scanning model for translation - an update. J Cell Biol 108(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Larson ET, Parussini F, Huynh MH, Giebel JD, Kelley AM, Zhang L, Bogyo M, Merritt EA, Carruthers VB (2009) Toxoplasma gondii cathepsin L is the primary target of the invasion-inhibitory compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl. J Biol Chem 284(39):26839–26850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laurent F, Bourdieu C, Kaga M, Chilmonczyk S, Zgrzebski G, Yvore P, Pery P (1993) Cloning and characterization of an Eimeria acervulina sporozoite gene homologous to aspartyl proteinases. Mol Biochem Parasitol 62(2):303–312

    Article  CAS  PubMed  Google Scholar 

  • Long PL, Millard BJ, Joyner LP, Norton CC (1976) A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Vet Lat 6(3):201–217

    CAS  PubMed  Google Scholar 

  • McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M (2006) Proteases in parasitic diseases. Annu Rev Pathol Mech 1(1):497–536

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Ndao M, Beaulieu C, Black WC, Isabel E, Vasquez-Camargo F, Nath-Chowdhury M, Masse F, Mellon C, Methot N, Nicoll-Griffith DA (2014) Reversible cysteine protease inhibitors show promise for a chagas disease cure. Antimicrob Agents Chemother 58(2):1167–1178

    Article  PubMed Central  PubMed  Google Scholar 

  • Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB (2010) Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 76(6):1340–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rieux A, Gras S, Lecaille F, Niepceron A, Katrib M, Smith NC, Lalmanach G, Brossier F (2012) Eimeripain, a cathepsin B-like cysteine protease, expressed throughout sporulation of the apicomplexan parasite Eimeria tenella. PLOS One 7(3):e31914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH (1988) A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 82(5):1560–1566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenthal PJ, McKerrow JH, Rasnick D, Leech JH (1989) Plasmodium falciparum: inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol 35(2):177–183

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Sanderson S, Pollock K, Hilley J, MELDAL M, Hilaire P, Juliano M, JULIANO L, Mottram J, Coombs G (2000) Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana. Biochem J 347:383–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffer M, Schroeder J, Heckeroth AR, Noack S, Gassel M, Mottram JC, Selzer PM, Coombs GH (2012) Identification of lead compounds targeting the cathepsin B-like enzyme of Eimeria tenella. Antimicrob Agents Chemother 56(3):1190–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmatz DM, Crane MS, Murray PK (1984) Purification of eimeria sporozoites by DE-52 anion-exchange chromatograpy. J Protozool 31(1):181–183

    Article  CAS  PubMed  Google Scholar 

  • Schwarz RS, Fetterer RH, Rosenberg GH, Miska KB (2010) Coccidian merozoite transcriptome analysis from Eimeria maxia in comparision to Eimeria tenella and Eimeria acervulina. J Parasitol 96(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Selzer PM, Pingel S, Hsieh I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH (1999) Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci U S A 96(20):11015–11022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275(37):29000–29010

    Article  CAS  PubMed  Google Scholar 

  • Shirley MW, Smith AL, Tomley FM (2005) The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60:285–330

    Article  PubMed  Google Scholar 

  • Teixeira C, Gomes JRB, Gomes P (2011) Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem 18(10):1555–1572

    Article  CAS  PubMed  Google Scholar 

  • Teo CF, Zhou XW, Bogyo M, Carruthers VB (2007) Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother 51(2):679–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas T, Cavicchioli R (1998) Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett 439(3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) Ligplot—a program to generate schematic diagrams of protein ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Xu JH, Qin ZH, Liao YS, Xie MQ, Li AX, Cai JP (2008) Characterization and expression of an actin-depolymerizing factor from Eimeria tenella. Parasitol Res 103(2):263–270

    Article  PubMed  Google Scholar 

  • Xu SZ, Chen T, Wang M (2006) Protective immunity enhanced by chimeric DNA prime-protein booster strategy against Eimeria tenella challenge. Avian Dis 50(4):579–585

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Joint Project of Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province (no. U0831004 to J. P. Cai). The authors are grateful to the technical staff of our laboratory for their assistance during this study. We would also like to thank LetPub (www.letpub.com) for linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Cai or Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Ma, X., Liu, A. et al. Identification and characterization of a cathepsin-L-like peptidase in Eimeria tenella . Parasitol Res 113, 4335–4348 (2014). https://doi.org/10.1007/s00436-014-4107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4107-2

Keywords

Navigation