Skip to main content
Log in

Use of fluorescent lectin binding to distinguish Teladorsagia circumcincta and Haemonchus contortus eggs, third-stage larvae and adult worms

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Lectin binding to carbohydrates on parasite surfaces has been investigated as a method of distinguishing adult worms, eggs and sheathed and exsheathed L3 of Teladorsagia circumcincta and Haemonchus contortus, economically important abomasal parasites in temperate climates. Both species were maintained as pure laboratory cultures of field isolates from New Zealand. Each of the four life cycle stages could be distinguished by the binding of at least one lectin: adult worms by Sambucus nigra agglutinin (SNA); eggs by peanut agglutinin (PNA), ConcavalinA and Lens culinaris agglutinin (LCA); exsheathed L3 by Griffonia simplicifolia-I lectin (GSL-I) and Lotus tetragonolobus lectin (LTL) and sheathed L3 by Aleuria aurantia lectin (AAL). The whole surface of both adult T. circumcincta and H. contortus strongly bound lectins specific for N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), mannose and fucose, but the two species could be distinguished by SNA binding only to T. circumcincta. Eggs could be distinguished by the binding of mannose-specific PNA to H. contortus and GalNAc-specific LCA and PSA to T. circumcincta eggs. GalNAc, GlcNAc and mannose lectins bound to the cuticle and over the excretory pores of a large proportion of sheathed L3 of both species, but only the H. contortus surface had exposed fucose or sialic acid complexes. The distinguishing lectin for sheathed L3 was AAL, which did not bind to T. circumcincta, but bound weakly to the head region of all fresh H. contortus and to 50–90% after 3 months storage. The cuticle of exsheathed L3 was unresponsive to all 19 lectins, and any binding was restricted to the head and tail regions. L3 exsheathed after 2–4 months storage could be distinguished by the binding of GSL-I and LTL to H. contortus but not to T. circumcincta. Lectin binding could be a useful adjunct in identifying L3, but lacked the consistency to be definitive, whereas it could be further developed as a practical method of distinguishing parasitic nematodes at other stages in the life cycle, particularly the eggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Badley J, Grieve RB, Rockey JH, Glickman LT (1987) Immune-mediated adherence of eosinophils to Toxocara canis infective larvae: the role of excretory-secretory antigens. Parasite Immunol 9:133–143

    Article  PubMed  CAS  Google Scholar 

  • Bailey JN, Kahn LP, Walkden-Brown SW (2009) Availability of gastro-intestinal nematode larvae to sheep following winter contamination of pasture with six nematode species on the Northern Tablelands of New South Wales. Vet Parasitol 160:89–99

    Article  PubMed  CAS  Google Scholar 

  • Bird AF (1990) Vital staining of glycoprotein secreted by infective third stage larvae of Haemonchus contortus prior to exsheathment. Int J Parasitol 20:619–623

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML, Page AP, Rudin W, Maizels RM (1992) Nematode surface coats - actively evading immunity. Parasitol Today 8:243–247

    Article  PubMed  CAS  Google Scholar 

  • Bone LW, Bottjer KP (1985) Cuticular carbohydrates of three nematode species and chemoreception by Trichostrongylus colubriformis. J Parasitol 71:235–238

    Article  PubMed  CAS  Google Scholar 

  • Bowman DD, Abraham D, Mikagrieve M, Grieve RB (1988) Binding of Concanavalin-A to areas compatible with the locations of the amphids and phasmids of larvae of Dirofilaria immitis (Nematoda, Filarioidea) and Toxocara canis (Nematoda, Ascaridoidea). Proc Helminthol Soc Wash 55:94–96

    Google Scholar 

  • Chen Q, Robertson L, Jones JT, Blok VC, Phillips MS, Brown DJF (2001) Capture of nematodes using antiserum and lectin-coated magnetised beads. Nematology 3:593–601

    Article  Google Scholar 

  • Colditz IG, Le Jambre LF, Hosse R (2002) Use of lectin binding characteristics to identify gastrointestinal parasite eggs in faeces. Vet Parasitol 105:219–227

    Article  PubMed  CAS  Google Scholar 

  • Dell A, Haslam SM, Morris HR, Khoo KH (1999) Immunogenic glycoconjugates implicated in parasitic nematode diseases. Biochim Biophys Acta 1455:353–362

    PubMed  CAS  Google Scholar 

  • Harrison GBL, Pulford HD, Hein WR, Barber TK, Shaw RJ, McNeill M, StJ W, Shoemaker CB (2003a) Immune rejection of Trichostrongylus colubriformis; a possible role for intestinal mucus antibody against an L3-specific surface antigen. Parasite Immunol 25:45–53

    Article  PubMed  CAS  Google Scholar 

  • Harrison GBL, Pulford HD, Hein WR, Severn WB, Shoemaker CB (2003b) Characterization of a 35-kDa carbohydrate larval antigen (CarLA) from Trichostrongylus colubriformis; a potential target for host immunity. Parasite Immunol 25:79–86

    Article  PubMed  CAS  Google Scholar 

  • Harrison GBL, Pulford HD, Doolin EE, Pernthaner A, Shoemaker CB, Hein WR (2008) Antibodies to surface epitopes of the carbohydrate larval antigen CarLA are associated with passive protection in strongylid nematode challenge infections. Parasite Immunol 30:577–584

    PubMed  CAS  Google Scholar 

  • Haslam SM, Morris HR, Dell A (2001) Mass spectrometric strategies: providing structural clues for helminth glycoproteins. Trends Parasitol 17:231–235

    Article  PubMed  CAS  Google Scholar 

  • Hill DE, Fetterer RH, Urban JF (1991) Ascaris suum: stage-specific differences in lectin binding to the larval cuticle. Exp Parasitol 73:376–383

    Article  PubMed  CAS  Google Scholar 

  • Joachim A, Ruttkowski B, Daugschies A (1999) Changing surface antigen and carbohydrate patterns during the development of Oesophagostomum dentatum. Parasitology 119:491–501

    Article  PubMed  Google Scholar 

  • Jurasek ME, Bishop-Stewart JK, Storey BE, Kaplan RM, Kent ML (2010) Modification and further evaluation of a fluorescein-labeled peanut agglutinin test for identification of Haemonchus contortus eggs. Vet Parasitol 169:209–213

    Article  PubMed  CAS  Google Scholar 

  • Kerboeuf D, Guégnard F, Le Vern Y (2002) Analysis and partial reversal of multidrug resistance to anthelmintics due to P-glycoprotein in Haemonchus contortus eggs using Lens culinaris lectin. Parasitol Res 88:816–821

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Pritchard DI (1992) Distinction of human hookworm larvae based on lectin binding characteristics. Parasite Immunol 14:233–237

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Pritchard DI (1994) Apparent feeding behaviour of ensheathed 3rd stage infective larvae of human hookworms. Int J Parasitol 24:133–136

    Article  PubMed  CAS  Google Scholar 

  • Lancaster MB, Hong C (1987) Differentiation of third stage larvae of ‘ovine Ostertagia’ type and Trichostrongylus species. Vet Rec 120:503

    Article  PubMed  CAS  Google Scholar 

  • López de Mendoza ME, Curtis RHC, Gowen S (1999) Identification and characterization of excreted-secreted products and surface coat antigens of animal and plant-parasitic nematodes. Parasitology 118:397–405

    Article  PubMed  Google Scholar 

  • López de Mendoza ME, Modha J, Roberts MC, Curtis R, Kusel JR (2000) Changes in the lipophilicity of the surfaces of Meloidogyne incognita and Haemonchus contortus during exposure to host signals. Parasitology 120:203–209

    Article  PubMed  Google Scholar 

  • Lustigman S, Huima T, Brotman B, Miller K, Prince AM (1990) Onchocerca volvulus: biochemical and morphological characteristics of the surface of third- and fourth-stage larvae. Exp Parasitol 71:489–495

    Article  PubMed  CAS  Google Scholar 

  • Maass DR, Harrison GBL, Grant WN, Shoemaker CB (2007) Three surface antigens dominate the mucosal antibody response to gastrointestinal L3-stage strongylid nematodes in field immune sheep. Int J Parasitol 37:953–962

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Desavigny D, Ogilvie BM (1984) Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasite Immunol 6:23–37

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM, Bundy DAP, Selkirk ME, Smith DF, Anderson RM (1993) Immunological modulation and evasion by helminth parasites in human populations. Nature 365:797–805

    Article  PubMed  CAS  Google Scholar 

  • McMurtry LW, Donaghy MJ, Vlassoff A, Douch PGC (2000) Distinguishing morphological features of the third larval stage of ovine Trichostrongylus spp. Vet Parasitol 90:73–81

    Article  PubMed  CAS  Google Scholar 

  • Milner AR, Mack WN (1988) Trichostrongylus colubriformis - analysis of monoclonal antibody and lectin binding to the larval cuticle. Parasite Immunol 10:425–432

    Article  PubMed  CAS  Google Scholar 

  • Nyame AK, Kawar ZS, Cummings RD (2004) Antigenic glycans in parasitic infections: implications for vaccines and diagnostics. Arch Biochem Biophys 426:182–200

    Article  PubMed  CAS  Google Scholar 

  • Page AP, Rudin W, Maizels RM (1992) Lectin binding to secretory structures, the cuticle and the surface coat of Toxacara canis infective larvae. Parasitology 105:285–296

    Article  PubMed  Google Scholar 

  • Palmer DG, McCombe IL (1996) Lectin staining of trichostrongylid nematode eggs of sheep: rapid identification of Haemonchus contortus eggs with peanut agglutinin. Int J Parasitol 26:447–450

    Article  PubMed  CAS  Google Scholar 

  • Politz SM, Philipp M (1992) Caenorhabditis elegans as a model for parasitic nematodes - a focus on the cuticle. Parasitol Today 8:6–12

    Article  PubMed  CAS  Google Scholar 

  • Raleigh JM, Brandon MR, Meeusen E (1996) Stage-specific expression of surface molecules by the larval stages of Haemonchus contortus. Parasite Immunol 18:125–132

    Article  PubMed  CAS  Google Scholar 

  • Rao UR, Chandrashekar R, Rajasekariah GR, Subrahmanyam D (1987) Wheat germ agglutinin specifically binds to the surface of infective larvae of Wuchereria bancrofti. J Parasitol 73:1256–1257

    Article  PubMed  CAS  Google Scholar 

  • Rao UR, Kwa BH, Nayar JK, Vickery AC (1989) Lectin binding to larval stages of Brugia patei. Int J Parasitol 19:689–690

    Article  PubMed  CAS  Google Scholar 

  • Riou M, Guégnard F, Sizaret P-Y, Le Vern Y, Kerboeuf D (2010) Drug resistance is affected by colocalization of P-glycoproteins in raft-like structures unexpected in eggshells of the nematode Haemonchus contortus. Biochem Cell Biol 88:459–467

    Article  PubMed  CAS  Google Scholar 

  • Simpson HV, Simpson BH, Simcock DC, Reynolds GW, Pomroy WE (1999) Abomasal secretion in sheep receiving adult Ostertagia circumcincta that are prevented from contact with the mucosa. New Zeal Vet J 47:20–24

    Article  CAS  Google Scholar 

  • Smith HV, Quinn R, Kusel JR, Girdwood RWA (1981) The effect of temperature and antimetabolites on antibody binding to the outer surface of second stage Toxocara canis larvae. Mol Biochem Parasitol 4:183–193

    Article  PubMed  CAS  Google Scholar 

  • Spiegel Y, McClure MA (1995) The surface coat of plant-parasitic nematodes: chemical composition, origin, and biological role – a review. J Nematol 27:127–134

    PubMed  CAS  Google Scholar 

  • Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19:527–536

    Article  PubMed  CAS  Google Scholar 

  • Taylor DW, Goddard JM, McMahon JE (1986) Surface components of Onchocerca volvulus. Mol Biochem Parasitol 18:283–300

    Article  PubMed  CAS  Google Scholar 

  • van Wyk JA, Cabaret J, Michael LM (2004) Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet Parasitol 119:277–306

    Article  PubMed  Google Scholar 

  • Waghorn TS, Leathwick DM, Rhodes AP, Jackson R, Pomroy WE, West DM, Moffat JR (2006) Prevalence of anthelmintic resistance on 62 beef cattle farms in the North Island of New Zealand. New Zeal Vet J 54:278–282

    Article  CAS  Google Scholar 

  • Wilson DJ, Sargison ND, Scott PR, Penny CD (2008) Epidemiology of gastrointestinal nematode parasitism in a commercial sheep flock and its implications for control programmes. Vet Rec 162:546–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Merial S.A.S. and Meat and Wool New Zealand for their generous financial support for this project. All marks ® are the property of their respective owners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather V. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillrichs, K., Schnieder, T., Forbes, A.B. et al. Use of fluorescent lectin binding to distinguish Teladorsagia circumcincta and Haemonchus contortus eggs, third-stage larvae and adult worms. Parasitol Res 110, 449–458 (2012). https://doi.org/10.1007/s00436-011-2511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2511-4

Keywords

Navigation