Skip to main content

Advertisement

Log in

Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study explored the effects of Jatropha curcas leaf extract and Bacillus thuringiensis israelensis larvicidal activity against the lymphatic filarial vector, Culex quinquefasciatus. Wights were selected for investigating the larvicidal potential against the first to fourth instar larvae of the laboratory-reared mosquito species, C. quinquefasciatus Say, in which the major lymphatic filariasis was used. The medicinal plants were collected from the area around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electric blender. From the powder, 100 g of the plant materials was extracted with 300 ml of organic solvents of methanol for 8 h, using a Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the leaf extract of methanol J. curcas against the first to fourth instar larvae of values LC50 = 1.200%, 1.290%, 1.358%, and 1.448% and LC90 = 2.094%, 2.323%, 2.444%, and 2.544% and B. thuringiensis israelensis against the first to fourth instar larvae of values LC50 = 9.332%, 9.832%, 10.212%, 10.622% and LC90 = 15.225%, 15.508%, 15.887%, and 15.986% larvae of C. quinquefasciatus, respectively. No mortality was observed in the control. These results suggest methanol extracts of J. curcas and B. thuringiensis israelensis have potential to be used as an ideal eco-friendly approach for the control of the major lymphatic filarial vector, C. quinquefasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of insecticides. J Econ Entomol 18:267–269

    Google Scholar 

  • Alder HL, Rossler EB (1977) Introduction to probability and statistics. Freeman, San Francisco, p 246

    Google Scholar 

  • Ali A (1981) Bacillus thuringiensis serovar. israelensis (ABG-6108) against Chironomids and some non target aquatic invertebrates. J Invertebr Pathol 38:264–272

    Article  Google Scholar 

  • Babu R, Murugan K (2000) Larvicidal effect of resinous exudates from the tender leaves of Azadirachta indica. Neem Newsl 17 (1)

  • Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res 104:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Charles JF, de Barjac H (1983) Action des cristaux de Bacillus thuringiensis var. israelensis Su 1' intestin moyen des larves de Aedes aegypti L. en microscopic electronique. Ann Microbiol Inst Pasteur 134:197–218

    Article  Google Scholar 

  • Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U, Pitasawat B (1999) Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Health 30:470–476

    CAS  Google Scholar 

  • Daniel T, Umarani S, Sakthivadivel M (1995) Insecticidal action of Ervatamia divaricata L. and Acalypha indica L. against Culex quinquefasciatus Say. Geobias 14:95–98

    Google Scholar 

  • de Barjac H, Coz J (1979) Sensibilite comparee de six especes differentes de moustiques a Bacillus thuringiensis var. israelensis. Bull WHO 57:139–141

    PubMed  Google Scholar 

  • Dwivedi SC, Kavitha KC (2001) Ricinus communis: a potential larvicide for mosquitoes. Pestology 25:48–50

    Google Scholar 

  • English L, Slatin SL (1992) Mode of action of delta endotoxin from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Mol Biol 22:1–7

    Article  CAS  Google Scholar 

  • Fagbenro-Bejioku AF, Oyibo WA, Anyforom BC (1998) Disinfectant/antiparasitic activities of Jatropha curcas. East Afr Med J 75:508–51.1

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Garcia R, Desrochers BD (1979) Toxicity of Bacillus thuringiensis var. israelensis to some California mosquitoes under different conditions. Mosq News 39:541–544

    Google Scholar 

  • Goettel MS, Toohey MK, Pillai JS (1982) Laboratory bioassays of four formulations of Bacillus thuringiensis israelensis against Aedespolynesiensis, Ae. Pseudoscutellaris and Ae. aegypti. Mosq News 42:163–167

    Google Scholar 

  • Goldberg L, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata. Culex univitattus, Aedes aegypti, and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Gould F, Anderson A, Landis D, Van Mellaert J (1991) Feeding behaviour and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol Exp Appl 58:199–210

    Article  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Kamalakannan S, Murugan K, Thiyagarajan P, Nareshkumar A, Abirami A (2009) Larvicidal and smoke toxicity effect of Tridax procumbens against malarial vector, Anopheles stephensi (Diptera: Culicidae). Asian J Microbiol Biotechnol Environ Sci 11(2):293–297

    Google Scholar 

  • Kaushik N, Kumar S (2005) Jatropha curcas L. Silviculture and uses. Agrobios (India), Jodhpur, pp 1–27

    Google Scholar 

  • Laird M, Miles JW (1985) Integrated mosquito control methodologies. Vol. 2, 444 pp. Academic, London

    Google Scholar 

  • Lindroth RL, Scriber JM, Hsia MTS (1988) Chemical ecology of the tiger swallowtail: mediation of host use by phenolic glycosides. Ecology 69:814–822

    Article  CAS  Google Scholar 

  • Ludlum CT, Felton G, Duffey SS (1991) Plant defense: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thruringiensis subsp. kurstaki to Heliothis zea. J Chem Ecol 17:217–237

    Article  CAS  Google Scholar 

  • Morton JF (1981) Atlas of medicinal plants of middle America. Bahamas to Yucatan. C.C. Thomas, Springfield

    Google Scholar 

  • Mullai K, Jebanesan A (2007) Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitaceous plants against filarial vector Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 24(1):1–6

    PubMed  CAS  Google Scholar 

  • Murugan K, Jeyabalan D (1999) Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Curr Sci 76(5):631–633

    Google Scholar 

  • Murugan K, Babu R, Jeyabalan D, Senthilkumar N, Sivaramakrishnan S (1996) Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of Anopheles stephensi Liston. J Entomol Res 20:137–139

    Google Scholar 

  • Murugan K, Thangamathi P, Jeyabalan D (2002) Interactive effect of botanical and Bacillus thuringiensis subsp. israelensis on Culex quinquefasciatus Say. J Sci Ind Res 61:1068–1076

    Google Scholar 

  • Nasiruddin M, Mordue Luntz AJ (1993) The effect of azadirachtin on the midgut histology of the locusts Schistocerca gregaria and Locusta migratoria. Tissue Cell 25:875–884

    Article  PubMed  CAS  Google Scholar 

  • Nugud AD, White GB (1982) Evaluation of Bacillus thuringiensis serotype H-14 formulations as larvicides for Anopheles arabiensis (species B of the An. Gambiae complex). Mosq News 42:36–40

    Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2007) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102(5):981–988

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008b) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104:637–643

    Article  PubMed  Google Scholar 

  • Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes vis. Culex quinquefaciatus, Anopheles staphensi and Aedes aegypti. Appl Entomol Zool 43:57–63

    Article  Google Scholar 

  • Service MW (2000) Medical entomology for students, 2nd edn. Cambridge University Press, Cambridge, pp 52–55

    Google Scholar 

  • Sharma M, Saxena RC (1994) Phytotoxicological evaluation of Tagetes erects on aquatic stages of Anopheles stephensi. Indian J Malariol 31:21–26

    PubMed  CAS  Google Scholar 

  • Sieber KP, Rembold H (1983) The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. J Insect Physiol 29:523–527

    Article  CAS  Google Scholar 

  • Singh CP, Singh KN, Pandey MC (1996) Insect growth regulatory effect of neem derivative “Neemolin” on Spilosoma obligue Walker. Pestology 5:11–13

    Google Scholar 

  • Thiery I, Back C, Barbazzan P, Sinegre G (1996) Applications de Bacillus thuringiensis et de B. sphaericus dans la demoustication et la., lutte contreles veccteurs de maladies tropicales. Ann Inst Pasteur Actual 7:47–260

    Google Scholar 

  • Tomass Z, Hadis M, Taye A, Mekonnen Y, Petros B (2011) Larvicidal effects of Jatropha curcas L. against Anopheles arabiensis (Diptera: Culicidea). MEJS 3(1):52–64

    Google Scholar 

  • Undeen AH, Nagel WL (1978) The effect of Bacillus thuringiensis ONR-60A strain (Goldberg) on Simulium larvae in the laboratory. Mosq News 38:524–527

    Google Scholar 

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresour Technol 82:203–204

    Article  PubMed  CAS  Google Scholar 

  • Vineetha A, Murugan K (2009) Larvicidal and smoke repellency effect of Todaalia asiatica and Aegle marmelos against the dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Entomol Res 39:61–25

    Article  Google Scholar 

  • Vogel (1978) Textbook of practical organic chemistry. The English Language Book Society and Longman, London, p 1368

    Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Sasikala (Professor and Head), Department of Zoology, Bharathiar University, Coimbatore, India, for providing the necessary facilities for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovendan, K., Murugan, K., Vincent, S. et al. Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 109, 1251–1257 (2011). https://doi.org/10.1007/s00436-011-2368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2368-6

Keywords

Navigation