Skip to main content
Log in

The trypanocidal effect of NO-releasing agents is not due to inhibition of the major cysteine proteinase in Trypanosoma brucei

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The lysosomal cysteine proteinase activity of bloodstream forms of Trypanosoma brucei is a validated drug target. Previously, it was reported that nitric oxide (NO)-releasing agents inhibit the catalytic activity of cysteine proteinases of the protozoan parasites Leishmania infantum, Trypanosoma cruzi and Plasmodium falciparum. In this study, we investigated the effect of the NO-donors S-nitrosoglutathione, (±)-(E)-4-ethyl-2[(E)-hydroxyimino]-5-nitro-3-hexenamide, 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetyl-dl-penicillamine on the activity of the cysteine proteinase of T. brucei. At a concentration of 1 mM, the NO donors inhibited the catalytic activity of purified T. brucei cysteine proteinase by 50–90%. With the exception of SIN-1, all NO donors displayed trypanocidal activities against bloodstream forms of T. brucei in vitro with 50% growth inhibition values of around 30 μM. However, the NO donors were ineffective in significantly inhibiting the cysteine proteinase activity within the parasites. This finding was confirmed by the ineffectiveness of the NO donors to block proteinolysis in the lysosome of the parasites. The results show that the trypanocidal activity of NO donors cannot be attributed to the inhibition of the major lysosomal cysteine proteinase in bloodstream forms of T. brucei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascenzi P, Bocedi A, Gentile M, Visca P, Gradoni L (2004) Inactivation of parasite cysteine proteinases by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate. Biochim Biophys Acta 1703:69–77

    CAS  PubMed  Google Scholar 

  • Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4:1273–1277

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol 80:535–561

    Article  CAS  PubMed  Google Scholar 

  • Bocedi A, Gradoni L, Menegatti E, Ascenzi P (2004) Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochem Biophys Res Commun 315:710–718

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon SC, Alves CR, Giovanni-De-Simone S (1997) Detrimental effect of nitric oxide on Trypanosoma cruzi and Leishmania major like cells. Acta Trop 66:109–118

    Article  CAS  PubMed  Google Scholar 

  • Caffrey CR, Hansell E, Lucas KD, Brinen LS, Alvarez Hernandez A, Cheng J, Gwaltney SL 2nd, Roush WR, Stierhof YD, Bogyo M, Steverding D, McKerrow JH (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 118:61–73

    Article  CAS  PubMed  Google Scholar 

  • Clark IA, Rockett KA (1996) Nitric oxide and parasitic disease. Adv Parasitol 37:1–56

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19:488–494

    Article  CAS  PubMed  Google Scholar 

  • Fast B, Kremp K, Boshart M, Steverding D (1999) Iron-dependent regulation of transferrin receptor expression in Trypanosoma brucei. Biochem J 342:691–696

    Article  CAS  PubMed  Google Scholar 

  • Grab DJ, Wells CW, Shaw MK, Webster P, Russo DCW (1992) Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled. Eur J Cell Biol 59:398–404

    CAS  PubMed  Google Scholar 

  • Hirumi H, Hirumi K, Doyle JJ, Cross GAM (1980) In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei. Parasitology 80:371–382

    Article  CAS  PubMed  Google Scholar 

  • Huber W, Koella JC (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55:257–261

    Article  CAS  PubMed  Google Scholar 

  • Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN (1999) Measuring the costs of African animal trypanosomosis, the potential benefits of control and returns to research. Agr Sys 59:79–98

    Article  Google Scholar 

  • Matovu E, Seebeck T, Enyaru JCK, Kaminsky R (2001) Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Microbes Infect 3:763–770

    Article  CAS  PubMed  Google Scholar 

  • Nkemngu NJ, Grande R, Hansell E, McKerrow JH, Caffrey CR, Steverding D (2003) Improved trypanocidal activities of cathepsin L inhibitors. Int J Antimicrob Agents 22:155–159

    Article  Google Scholar 

  • Petray P, Castaños-Velez E, Grinstein A, Orn A, Rottenberg ME (1995) Role of nitric oxide in resistance and histopathology during experimental infection with Trypanosoma cruzi. Immunol Lett 47:121–126

    Article  CAS  PubMed  Google Scholar 

  • Rockett KA, Awburn MM, Cowden WB, Clark IA (1991) Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun 59:3280–3283

    CAS  PubMed  Google Scholar 

  • Ross CA, Sutherland DV (1997) Drug resistance in trypamosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH (eds) Trypanosomiasis and leishmaniasis: biology and control. CAB International, Wallingford, pp 259–269

    Google Scholar 

  • Salvati L, Mattu M, Colasanti M, Scalone A, Venturini G, Gradoni L, Ascenzi P (2001) NO donors inhibit Leishmania infantum cysteine proteinase activity. Biochim Biophys Acta 1545:357–366

    CAS  PubMed  Google Scholar 

  • Scory S, Caffrey CR, Stierhof YD, Ruppel A, Steverding D (1999) Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2. Exp Parasitol 91:327–333

    Article  CAS  PubMed  Google Scholar 

  • Steverding D (2008) The history of African trypanosomiasis. Parasit Vectors 1:3

    Article  PubMed  Google Scholar 

  • Steverding D, Stierhof YD, Fuchs H, Tauber R, Overath P (1995) Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol 131:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Steverding D, Caffrey CR, Sajid M (2006) Cysteine proteinase inhibitors as therapy for parasitic diseases: advances in inhibitor design. Mini Rev Med Chem 6:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Venturini G, Colasanti M, Salvati L, Gradoni L, Ascenzi P (2000a) Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease. Biochem Biophys Res Commun 267:190–193

    Article  CAS  PubMed  Google Scholar 

  • Venturini G, Salvati L, Muolo M, Colasanti M, Gradoni L, Ascenzi P (2000b) Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi. Biochem Biophys Res Commun 270:437–441

    Article  CAS  PubMed  Google Scholar 

  • Vespa GN, Cunha FQ, Silva JS (1994) Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasites in vitro. Infect Immun 62:5177–5182

    CAS  PubMed  Google Scholar 

  • Vincendeau P, Daulouède S, Veyret B, Darde ML, Bouteille B, Lemesre JL (1992) Nitric oxide-mediated cytostatic activity on Tyrpanosoma brucei gambiense and Trypanosoma brucei brucei. Exp Parasitol 75:353–360

    Article  CAS  PubMed  Google Scholar 

  • WHO (2006) African trypanosomiasis (sleeping sickness). World Health Organ Fact Sheet 259 [http://www.who.int/mediacentre/factsheets/fs259/en/]

Download references

Acknowledgements

We thank Dr Conor Caffrey for rhodesain. This work was supported by the John & Pamela Salter Charitable Trust (RCN.298317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Steverding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steverding, D., Wang, X. & Sexton, D.W. The trypanocidal effect of NO-releasing agents is not due to inhibition of the major cysteine proteinase in Trypanosoma brucei . Parasitol Res 105, 1333–1338 (2009). https://doi.org/10.1007/s00436-009-1559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1559-x

Keywords

Navigation