Skip to main content

Advertisement

Log in

Melatonin: an endogenous miraculous indolamine, fights against cancer progression

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep–wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc.

Methods

For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention.

Results

The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity.

Conclusion

The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Moneim AE, Guerra-Librero A, Florido J, Shen YQ, Fernández-Gil B, Acuña-Castroviejo D, Escames G (2017) Oral mucositis: melatonin gel an effective new treatment. Int J Mol Sci 18(5):1003. https://doi.org/10.3390/ijms18051003

    Article  CAS  PubMed Central  Google Scholar 

  • Abedinzadeh Z (2001) Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest. Can J Physiol Pharmacol 79:166–170

    CAS  PubMed  Google Scholar 

  • Agez L, Laurent V, Pévet P, Masson-Pévet M, Gauer F (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522–530. https://doi.org/10.1016/j.neuroscience.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh M, Movassaghpour AA, Ghanbari H et al (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 7(1):1–11 (article 17062)

    CAS  Google Scholar 

  • Alqinyah M, Almutairi F, Wendimu MY, Hooks SB (2018) RGS10 regulates the expression of cyclooxygenase-2 and tumor necrosis factor alpha through a G protein–independent mechanism. Mol Pharmacol 94:1103–1113. https://doi.org/10.1124/mol.118.111674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Artime A, Cernuda-Cernuda R, Naveda F-A, Cepas V, Gonzalez-Menendez P, Fernadez-Vega S, Quiros-Gonzalez I, Sainz RM, Mayo JC (2020) Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci 21(2):548. https://doi.org/10.3390/ijms21020548

    Article  PubMed Central  Google Scholar 

  • American Cancer Society (2017) Cancer facts and figures. http://www.cancer.org/research/cancer-factsstatistics/all-cancer-facts-figures/cancer-facts-figures-2017. May 2018

  • Angelousi A et al (2018) Clock genes alterations and endocrine disorders. Eur J Clinc Investig 48:e12927. https://doi.org/10.1111/eci.12927

    Article  CAS  Google Scholar 

  • Anisimov VN, Popovich IG, Shtylik AV, Zabezhinski MA, Ben Huh H, Gurevich P, Berman V, Tendler Y, Zusman I (2000) Melatonin and colon carcinogenesis III. Effects of melatonin on proliferative activity and apoptosis in colon mucosa and colon tumors induced by 1,2-dimethylhydrazine in rats. Exp Toxicol Pathol 52:71–76. https://doi.org/10.1016/S0940-2993(00)80022-6

    Article  CAS  PubMed  Google Scholar 

  • Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M (2018) Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 196:143–155. https://doi.org/10.1016/j.lfs.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  • Baan R, Grosse Y, Straif K et al (2009) A review of human carcinogens. Part F: chemical agents and related occupations. Lancet Oncol 10:1143–1144

    PubMed  Google Scholar 

  • Bahna SG, Niles LP (2018) Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 175(16):3209–3219. https://doi.org/10.1111/bph.14058

    Article  CAS  PubMed  Google Scholar 

  • Basu AK (2018) DNA damage, mutagenesis and cancer. Int J Mol Sci 19:970. https://doi.org/10.3390/ijms19040970

    Article  CAS  PubMed Central  Google Scholar 

  • Bejarano I, Redondo PC, Espino J et al (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400

    CAS  PubMed  Google Scholar 

  • Benabu JC, Stoll F, Gonzalez M, Mathelin C (2015) Night work, shift work: breast cancer risk factor? Gynecol Obstet Fertil 43:791–799. https://doi.org/10.1016/j.gyobfe.2015.10.004

    Article  PubMed  Google Scholar 

  • Benitez-King G (2006) Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 40:1–9

    CAS  PubMed  Google Scholar 

  • Benna C et al (2017) Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 8:23978–23995. https://doi.org/10.18632/oncotarget.15074

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthon G (1993) Is copper pro-or anti-inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation. Agents Actions 39:210–217

    CAS  PubMed  Google Scholar 

  • Besag FMC, Vasey MJ, Lao KSJ, Wong ICK (2019) Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs 33(12):1167–1186. https://doi.org/10.1007/s40263-019-00680-w

    Article  PubMed  Google Scholar 

  • Bill R, Christofori G (2015) The relevance of EMT in breast cancer metastasis: correlation or causality? FEBS Lett 589:1577–1587. https://doi.org/10.1016/j.febslet.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri M, Proietti S, Cucina A, Reiter RJ (2013) Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 17(12):1483–1496. https://doi.org/10.1517/14728222.2013.834890

    Article  CAS  PubMed  Google Scholar 

  • Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283:15545–15549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA et al (2005) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184

    CAS  PubMed  Google Scholar 

  • Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA (2011) Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res 51:259–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blask DE, Dauchy RT, Dauchy EM, Mao L, Hill SM, Greene MW, Belancio VP, Sauer LA, Davidson L (2014) Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One 9:e102776. https://doi.org/10.1371/journal.pone.0102776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy S, Campbell A (2018) Mechanisms underlying tumor suppressive properties of melatonin. Int J Mol Sci 19:E2205. https://doi.org/10.3390/ijms19082205

    Article  CAS  PubMed  Google Scholar 

  • Borin TF, Arbab AS, Gelaleti GB et al (2016) Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res 60:3–15

    CAS  PubMed  Google Scholar 

  • Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20:161–168. https://doi.org/10.1016/j.semcancer.2010.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E et al (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21(16):6405–6412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(2005):409–414

    CAS  PubMed  Google Scholar 

  • Cabrera J, Negrín G, Estévez F, Loro J, Reiter RJ, Quintana J (2010) Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res 49:45–54. https://doi.org/10.1111/j.1600-079X.2010.00765.x

    Article  CAS  PubMed  Google Scholar 

  • Carbajo-Pescador S, Steinmetz C, Kashyap A et al (2012) Melatonin induces transcriptional regulation of Bim by Fox03a in HepG2 cells. Br J Cancer 108:442–449

    PubMed  PubMed Central  Google Scholar 

  • Carbajo-Pescador S, Ordonez R, Benet N, Jover R, Garcia-Palomo A, Mauriz JL, Gonzalez-Gallego J (2013) Inhibition of VEGF expression through blockade of Hif1alpha and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 109:83–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlberg C, Wiesenberg I (1995) The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationship. J Pineal Res 18:171–178. https://doi.org/10.1111/j.1600-079x.1995.tb00157.x

    Article  CAS  PubMed  Google Scholar 

  • Casado-Zapico S, Martín V, García-Santos G et al (2011) Regulation of the expression of death receptors and their ligands by melatonin in hematological cancer cell lines and in leukemia cells from patients. J Pineal Res 50:345–355

    CAS  PubMed  Google Scholar 

  • Chang H-C, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatgilialoglu C, D’Angelantonio M, Guerra M, Kaloudis P, Mulazzani QG (2009) A reevaluation of the ambident reactivity of the guanine moiety towards hydroxyl radicals. Angew Chem Int Ed Engl 48:2214–2217

    CAS  PubMed  Google Scholar 

  • Chen X, Wang Z, Ma H, Zhang S, Yang H, Wang H et al (2017) Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/CCL20 in glioma. Oncotarget 8:93580–93592. https://doi.org/10.18632/oncotarget.20525

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Cai L, Jiang P et al (2013) SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 715(1–3):219–229. https://doi.org/10.1016/j.ejphar.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  • Chottanapund S, van Duursen MBM, Navasumrit P et al (2014) Anti-aromatase effect of resveratrol and melatonin on hormonal positive breast cancer cells co-cultured with breast adipose fibroblasts. Toxicol In Vitro 28(7):1215–1221. https://doi.org/10.1016/j.tiv.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  • Chovancova B, Hudecova S, Lencesova L, Babula P, Rezuchova I, Penesova A, Grman M, Moravcik R, Zeman M, Krizanova O (2017) Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell Physiol Biochem 44:763–777. https://doi.org/10.1159/000485290

    Article  PubMed  Google Scholar 

  • Chuang J-I, Pan I-L, Hsieh C-Y, Huang C-Y, Chen P-C, Shin JW (2016) Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J Pineal Res 61:230–240

    CAS  PubMed  Google Scholar 

  • Chuffa LGA, Fioruci-Fontanelli BA, Mendes LO et al (2015) Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer 15(1):34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuffa LGA, Alves MS, Martinez M et al (2016a) Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr Relat Cancer 23(2):65–76

    CAS  PubMed  Google Scholar 

  • Chuffa LGA, Lupi Júnior LA, Seiva FRF et al (2016b) Quantitative proteomic profiling reveals that diverse metabolic pathways are influenced by melatonin in an in vivo model of ovarian carcinoma. J Proteome Res 15(10):3872–3882

    CAS  PubMed  Google Scholar 

  • Chuffa LGA, Reiter RJ, Lupi LA (2017) Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 38:945–952. https://doi.org/10.1093/carcin/bgx054

    Article  CAS  PubMed  Google Scholar 

  • Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222:1–15

    CAS  PubMed  Google Scholar 

  • Colombo J, Maciel JMW, Ferreira LC, Silva RFD, Zuccari DAPDC (2016) Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett 12:231–237. https://doi.org/10.3892/ol.2016.4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cos S, Recio J, Sánchez-Barceló EJ (1996) Modulation of the length of the cell cycle time of MCF-7 human breast cancer cells by melatonin. Life Sci 58:811–816. https://doi.org/10.1016/0024-3205(95)02359-3

    Article  CAS  PubMed  Google Scholar 

  • Cos S, Fernández R, Güézmes A, Sánchez-Barceló EJ (1998) Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res 58(19):4383–4390

    CAS  PubMed  Google Scholar 

  • Cos S, Mediavilla MD, Fernandez R et al (2002) Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res 32:90–96

    CAS  PubMed  Google Scholar 

  • Costa G, Haus E, Stevens R (2010) Shift work and cancer—considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health 36:163–179. https://doi.org/10.5271/sjweh.2899

    Article  PubMed  Google Scholar 

  • Dai J, Ram PT, Yuan L, Spriggs L, Hill SM (2001) Transcriptional repression of RORalpha activity in human breast cancer cells by melatonin. Mol Cell Endocrinol 176:111–120

    CAS  PubMed  Google Scholar 

  • Dauchy RT, Xiang S, Mao L, Brimer S, Wren MA, Yuan L, Anbalagan M, Hauch A, Frasch T, Rowan BG et al (2014) Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 74:4099–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lup LA (2019) Clock genes and the role of melatonin in cancer cells: an overview. Melatonin Res 2(2):133–157. https://doi.org/10.32794/mr11250026

    Article  Google Scholar 

  • De Bruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10(5):543–545. https://doi.org/10.1038/nn1884

    Article  CAS  Google Scholar 

  • Ding M, Ning J, Feng N, Li Z, Liu Z, Wang Y, Wang Y, Li X, Huo C, Jia X et al (2018) Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res 64:e12447. https://doi.org/10.1111/jpi.12447

    Article  CAS  Google Scholar 

  • do Amaral GF, Cipolla-Neto J (2018) A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab 62(4):472–479. https://doi.org/10.20945/2359-3997000000066

    Article  PubMed  Google Scholar 

  • Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440

    CAS  PubMed  Google Scholar 

  • Fang Z, Jung KH, Yan HH, Kim SJ, Rumman M, Park JH, Han B, Lee JE, Kang YW, Lim JH, Hong SS (2018) Melatonin synergizes with sorafenib to suppress pancreatic cancer via melatonin receptor and PDGFR-β/STAT3 pathway. Cell Physiol Biochem 47:1751–1768

    CAS  PubMed  Google Scholar 

  • Fang N, Hu C, Sun W, Xu Y, Gu Y, Wu L, Peng Q, Reiter RJ, Liu L (2020) Identification of a novel melatonin-binding nuclear receptor: vitamin D receptor. J Pineal Res 68(1):e12618. https://doi.org/10.1111/jpi.12618

    Article  CAS  PubMed  Google Scholar 

  • Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R (2018) Promising antineoplastic actions of melatonin. Front Pharmacol 9:1086. https://doi.org/10.3389/fphar.2018.01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SG, Peliciari-Garcia RA, Takahashi-Hyodo SA et al (2013) Effects of melatonin on DNA damage induced by cyclophosphamide in rats. Braz J Med Biol Res 46:278–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira GM, Martinez M, Camargo ICC, Domeniconi RF, Martinez FE, Chuffa LGA (2014) Melatonin attenuates Her-2, p38 MAPK, p-AKT, and mTOR levels in ovarian carcinoma of ethanol-preferring rats. J Cancer 5(9):728–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LC, Orso F, Dettori D, Lacerda JZ, Borin TF, Taverna D et al (2020) The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS One 15(2):e0228062. https://doi.org/10.1371/journal.pone.0228062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fic M, Gomulkiewicz A, Grzegrzolka J, Podhorska-Okolow M et al (2017) The impact of melatonin on colon cancer cells’ resistance to doxorubicin in an in vitro study. Int J Mol Sci 18(7):1396

    PubMed Central  Google Scholar 

  • Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D (2013) Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J Pineal Res 54:303–312

    CAS  PubMed  Google Scholar 

  • Frungieri MB, Mayerhofer A, Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI (2005) Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology 146(3):1541–1552

    CAS  PubMed  Google Scholar 

  • Galano A (2011) On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem Chem Phys 13:7178–7188

    CAS  PubMed  Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514. https://doi.org/10.1111/jpi.12514

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23:530. https://doi.org/10.3390/molecules23030530

    Article  CAS  PubMed Central  Google Scholar 

  • Gallego M, Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148

    CAS  PubMed  Google Scholar 

  • Gao Y, Xiao X, Zhang C, Yu W, Guo W et al (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing Pi3k/akt and NF-κB/iNOS signaling pathways. J Pineal Res 62(2):e12380

    Google Scholar 

  • García JA, Volt H, Venegas C, Doerrier C, Escames G, López LC, Acuña-Castroviejo D (2015) Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J 29:3863–3875

    PubMed  Google Scholar 

  • Garcia-Saenz A, Sánchez de Miguel A, Espinosa A et al (2018) Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ Health Perspect 126(4):047011. https://doi.org/10.1289/EHP1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatti G, Lucini V, Dugnani S, Calastretti A, Spadoni G, Bedini A et al (2017) Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget 8:68338–68353. https://doi.org/10.18632/oncotarget.20124

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaubert S, Bouchaut M, Brumas V, Berthon G (2000) Copper-ligand interactions and physiological free radical processes. Part 3. Influence of histidine, salicylic acid and anthranilic acid on copper-driven Fenton chemistry in vitro. Free Radic Res 32:451–461

    CAS  PubMed  Google Scholar 

  • Gheban BA, Rosca IA, Crisan M (2019) The morphological and functional characteristics of the pineal gland. Med Pharm Rep 92(3):226–234. https://doi.org/10.15386/mpr-1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilad E, Laufer M, Matzkin H, Zisapel N (1999) Melatonin receptors in PC3 human prostate tumor cells. J Pineal Res 26:211–220. https://doi.org/10.1111/j.1600-079X.1999.tb00586.x

    Article  CAS  PubMed  Google Scholar 

  • Gil-Martin et al (2019) The emergence of melatonin in oncology: focus on colorectal cancer. Med Res Rev 9(6):2239–2285. https://doi.org/10.1002/med.21582

    Article  Google Scholar 

  • Gitto E, Tan DX, Reiter RJ et al (2001) Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 53:1393–1401

    CAS  PubMed  Google Scholar 

  • Glasgow WC, Hui R, Everhart AL et al (1997) The linoleic acid metabolite, (13 s)-hydroxyoctadecadienoic acid, augments the epidermal growth factor receptor signaling pathway by attenuation of receptor dephosphorylation. J Biol Chem 272:19269–19276

    CAS  PubMed  Google Scholar 

  • González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Mateos S, Hill SM, Sánchez-Barceló EJ, Cos S (2007) Effects of MT1 melatonin receptor overexpression on the aromatase-suppressive effect of melatonin in MCF-7 human breast cancer cells. Oncol Reports 17:947–953

    Google Scholar 

  • González AG, Revilla NR, Sánchez-Barceló EJ (2019) Clinical uses of melatonin: evaluation of human trials on cancer treatment. Melatonin Res 2(2):47–69. https://doi.org/10.32794/mr11250021

    Article  Google Scholar 

  • Gonzalez-Gonzalez A, Mediavilla MD, Sanchez-Barcelo EJ (2018) Melatonin: a molecule for reducing breast cancer risk. Molecules 23:E336. https://doi.org/10.3390/molecules23020336

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Guerrico AM, Kazanietz MG (2005) Phorbol ester-induced apoptosis in prostate cancer cells via autocrine activation of the extrinsic apoptotic cascade. J Biol Chem 280:38982–38991

    CAS  PubMed  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    CAS  PubMed  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    CAS  PubMed  Google Scholar 

  • Hablitz LM, Molzof HE, Abrahamsson KE, Cooper JM, Prosser RA, Gamble KL (2015) GIRK channels mediate the nonphotic effects of exogenous melatonin. J Neurosci 35:14957–14965. https://doi.org/10.1523/JNEUROSCI.1597-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hansen J (2017) Night shift work and risk of breast cancer. Curr Environ Health Rep 4:325–339. https://doi.org/10.1007/s40572-017-0155-y

    Article  PubMed  Google Scholar 

  • Hao J, Li Z, Zhang C, Yu W, Tang Z, Li Y et al (2017) Targeting NF-kB/AP-2b signaling to enhance antitumor activity of cisplatin by melatonin in hepatocellular carcinoma cells. Am JCancer Res 7:13–27

    CAS  Google Scholar 

  • Hardeland R, Cardinali DP, Srinivasan V et al (2011) Melatonin-a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  • Hevia D, Gonzalez-Menendez P, Fernandez-Fernandez M et al (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a 13C stable isotope-resolved metabolomic Study. Int J Mol Sci 18(8):1620. https://doi.org/10.3390/ijms18081620

    Article  CAS  PubMed Central  Google Scholar 

  • Hill SM, Blask DE, Xiang S, Yuan L, Mao L, Dauchy RT, Dauchy EM, Frasch T, Duplesis T (2011) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 16:235–245

    PubMed  Google Scholar 

  • Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L et al (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22(3):R183–R204. https://doi.org/10.1530/ERC-15-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelle A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126:1121–1133

    CAS  PubMed  Google Scholar 

  • Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A (1999) Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 96:12436–12441

    CAS  PubMed  Google Scholar 

  • Jablonska K, Pula B, Zemla A et al (2014) Expression of the MT1 melatonin receptor in ovarian cancer cells. Int J Mol Sci 15(12):23074–23089

    PubMed  PubMed Central  Google Scholar 

  • James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, Laden F (2017) Outdoor light at night and breast cancer incidence in the Nurses Health Study II. Environ Health Perspect 125:087010. https://doi.org/10.1289/EHP935

    Article  PubMed  PubMed Central  Google Scholar 

  • Jardim-Perassi BV, Lourenço MR, Doho GM, Grígolo IH, Gelaleti GB, Ferreira LC, Borin TF, Moschetta MG, Zuccari DAPDC (2016) Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anti-Cancer Agents Med Chem 16(3):347–358. https://doi.org/10.2174/1871520615666150511094201

    Article  CAS  Google Scholar 

  • Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003. https://doi.org/10.1621/nrs.07003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G et al (2016) Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 173(18):2702–2725. https://doi.org/10.1111/bph.13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo SS, Yoo YM (2009) Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res 47:8–14

    CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48:9–19. https://doi.org/10.1111/j.1600-079X.2009.00729.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Isiddiqui IA, Mukhtar H, Ahmad N (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res 50(2):140–149

    CAS  PubMed  Google Scholar 

  • Kantermann T, Roenneberg T (2009) Is light-at-night a health risk factor or a health risk predictor? Chronobiol Int 2:1069–1074. https://doi.org/10.3109/07420520903223984

    Article  Google Scholar 

  • Kasai H, Kawai K, Li Y-S (2013) Free radical-mediated cytosine C-5 methylation triggers epigenetic changes during Carcinogenesis. BioMol Concepts 4(3):213–220. https://doi.org/10.1515/bmc-2012-0052

    Article  CAS  PubMed  Google Scholar 

  • Kiefer T, Ram PT, Yuan L, Hill SM (2002) Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat 71:37–45. https://doi.org/10.1023/A:1013301408464

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Yoo YM (2010) Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol 14:365–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleszczyński K, Kim TK, Bilska B, Sarna M, Mokrzynski K, Stegemann A, Pyza E, Reiter RJ, Steinbrink K, Böhm M, Slominski AT (2019) Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 67(4):e12610. https://doi.org/10.1111/jpi.12610

    Article  CAS  PubMed  Google Scholar 

  • Konturek SJ, Konturek PC, Brzozowska I et al (2007) Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol 58:381–405

    CAS  PubMed  Google Scholar 

  • Korkmaz A, Reiter RJ (2008) Epigenetic regulation: a new research area for melatonin? J Pineal Res 44:41–44. https://doi.org/10.1111/j.1600-079X.2007.00509.x

    Article  CAS  PubMed  Google Scholar 

  • Koşar PA, Naziroğlu M, Övey ÝS, Çiğ B (2016) Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: involvement of TRPV1 channels. J Membr Biol 249:129–140. https://doi.org/10.1007/s00232-015-9855-0

    Article  CAS  PubMed  Google Scholar 

  • Krakowski G, Cieciura L (1985) Ultrastructural studies on the pinealocyte mitochondria during the daytime and at night. J Pineal Res 2:315–324

    CAS  PubMed  Google Scholar 

  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201. https://doi.org/10.1016/j.mrfmmm.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  • Kubatka P, Zubor P, Busselberg D, Kwon TK, Adamek M, Petrovic D, Opatrilova R, Gazdikova K, Caprnda M, Rodrigo L et al (2018) Melatonin and breast cancer: Evidences from preclinical and human studies. Crit Rev Oncol Hematol 122:133–143. https://doi.org/10.1016/j.critrevonc.2017.12.018

    Article  PubMed  Google Scholar 

  • Kwon I et al (2011) Mammalian molecular clocks. Exp Neurobiol 20:18–28. https://doi.org/10.5607/en.2011.20.1.18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B, Frasch T, Hill SM (2008) The Galpha i and Galpha q proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res 45:476–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laothong U, Pinlaor P, Hiraku Y et al (2010) Protective effect of melatonin against Opisthorchis viverrini-induced oxidative and nitrosative DNA damage and liver injury in hamsters. J Pineal Res 49:271–282

    CAS  PubMed  Google Scholar 

  • Lee SE, Kim SJ, Youn JP, Hwang SY, Park CS, Park YS (2011) MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 51:345–352. https://doi.org/10.1111/j.1600-079X.2011.00896.x

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, Hwang SY, Park CS, Park YS (2013) Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res 54:80–88. https://doi.org/10.1111/j.1600-079X.2012.01027.x

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yoon YM, Han YS, Yun CW, Lee SH (2018a) Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res 38:1993–2000

    CAS  PubMed  Google Scholar 

  • Lee JH, Yun CW, Han YS, Kim S, Jeong D, Kwon HY, Kim H, Baek MJ, Lee SH (2018b) Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regula-ting cellular prion protein-Oct4 axis. J Pineal Res 65:e12519. https://doi.org/10.1111/jpi.12519

    Article  CAS  PubMed  Google Scholar 

  • Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49:248–255. https://doi.org/10.1111/j.1600-079X.2010.00789.x

    Article  CAS  PubMed  Google Scholar 

  • Leung M, Tranmer J, Hung E, Korsiak J, Day AG, Aronson KJ (2016) Shift work, chronotype, and melatonin patterns among female hospital employees on day and night shifts. Cancer Epidemiol Biomark Prev 25:830–838. https://doi.org/10.1158/1055-9965.EPI-15-1178

    Article  CAS  Google Scholar 

  • Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P, Jockers R (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 25:3012–3023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li H (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8:39896–39921. https://doi.org/10.18632/oncotarget.16379

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin ZY, Chuang WL (2012) High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells. Biomed Pharmacother 66:583–586. https://doi.org/10.1016/j.biopha.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Lee LM, Lee WJ et al (2016) Melatonin inhibits MMP-9 Transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs Pathway and NF-kappaB DNA-binding activity. J Pineal Res 60:277–290

    CAS  PubMed  Google Scholar 

  • Lissoni P (2007) Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol 55:201–204

    CAS  PubMed  Google Scholar 

  • Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G (2003) Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res 35:12–15

    CAS  PubMed  Google Scholar 

  • Liu L, Ying XuY, Reiter RJ (2013a) Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone 55(2):432–438. https://doi.org/10.1016/j.bone.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Fu A, Hoffman AE, Zheng T, Zhu Y (2013b) Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol 14:1. https://doi.org/10.1186/1471-2121-14-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML (2016a) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361–383. https://doi.org/10.1146/annurev-pharmtox-010814-124742

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xu Y, Reiter RJ, Pan Y, Chen D, Liu Y et al (2016b) Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cell Physiol Biochem 39:2297–2307. https://doi.org/10.1159/000447922

    Article  CAS  PubMed  Google Scholar 

  • Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S, Wang L (2017) Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv 7:21342–21351. https://doi.org/10.1039/c7ra02113e

    Article  CAS  Google Scholar 

  • Lu Y, Yi Y, Liu P, Wen W, James M, Wang D, You M (2007) Common human cancer genes discovered by integrated gene-expression analysis. PLoS One 2:e1149

    PubMed  PubMed Central  Google Scholar 

  • Lu J-J, Fu L, Tang Z, Zhang C, Qin L et al (2016) Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 7(3):2985–3001. https://doi.org/10.18632/oncotarget.6407

    Article  PubMed  Google Scholar 

  • Lupowitz Z, Zisapel N (1999) Hormonal interactions in human prostate tumor LNCaP cells. J Steroid Biochem Mol Biol 68(1–2):83–88. https://doi.org/10.1016/s0960-0760(98)00164-2

    Article  CAS  PubMed  Google Scholar 

  • Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B (2017) Melatonin: a pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 63:e12416

    Google Scholar 

  • Malhotra S, Sawhney G, Pandhi P (2004) The therapeutic potential of melatonin: a review of the science. Med Gen Med 6(2):46

    Google Scholar 

  • Malmlöf M, Roudier E, Högberg J, Stenius U (2007) MEK-ERK-mediated phosphorylation of Mdm2 at Ser-166 in hepatocytes. Mdm2 is activated in response to inhibited Akt signaling. J Biol Chem 282:2288–2296

    PubMed  Google Scholar 

  • Mao L, Yuan L, Slakey LM et al (2010) Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res 12:R107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Summers W, Xiang S et al (2016) Melatonin represses metastasis in Her2-postive human breast cancer cells by suppressing RSK2 expression. Mol Cancer Res 14:1159–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marelli MM, Limonta P, Maggi R, Motta M, Moretti RM (2000) Growth-inhibitory activity of melatonin on human androgen-independent DU 145 prostate cancer cells. Prostate 45(3):238–244

    CAS  PubMed  Google Scholar 

  • Marnett LJ (1987) Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis 8:1365–1373

    CAS  PubMed  Google Scholar 

  • Martinez-Campa C, Gonzalez A, Mediavilla MD, Alonso-Gonzalez C, Alvarez-Garcia V, Sanchez-Barcelo EJ, Cos S (2009) Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 101:1613–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andrés O, González P, González-Gallego J (2008) Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res 45:532–540. https://doi.org/10.1111/j.1600-079X.2008.00641.x

    Article  CAS  PubMed  Google Scholar 

  • Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    PubMed  PubMed Central  Google Scholar 

  • Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co- selecting interconnected physiological pathways. Cancer Metab 2(3):1–17

    Google Scholar 

  • Mattam U, Jagota A (2014) Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontol 15:257–268

    CAS  Google Scholar 

  • Matuszak Z, Bilska MA, Reszkat KJ, Chignell CF, Bilski P (2003) Interaction of singlet molecular oxygen with melatonin and related indoles. Photochem Photobiol 78:449–455

    CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    CAS  PubMed  Google Scholar 

  • Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C et al (2015) Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 9(3):601–616

    CAS  PubMed  Google Scholar 

  • Mediavilla MD, Cos S, Sanchez-Barcelo EJ (1999) Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci 65:415–420

    CAS  PubMed  Google Scholar 

  • Menéndez-Menéndez J, Martínez-Campa C (2018) Melatonin: an anti-tumor agent in hormone-dependent cancers. Int J Endocrinol Article ID 3271948. https://doi.org/10.1155/2018/3271948

  • Min C, Eddy SF, Sherr DH et al (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104:733–744

    CAS  PubMed  Google Scholar 

  • Molis TM, Spriggs LL, Jupiter Y, Hill SM (1995) Melatonin modulation of estrogen-regulated proteins, growth factors, and proto-oncogenes in human breast cancer. J Pineal Res 18(2):93–103

    CAS  PubMed  Google Scholar 

  • Morales-Santana S et al (2019) An overview of the polymorphisms of circadian genes associated with endocrine cancer. Front Endocrinol 10:104. https://doi.org/10.3389/fendo.2019.00104

    Article  Google Scholar 

  • Moretti RM, Marelli MM, Maggi R, Dondi D, Motta M, Limonta P (2000) Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep 7(2):347–351

    CAS  PubMed  Google Scholar 

  • Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptor localisation, molecular pharmacology and physiological significance. Neurochem Int 24:101–146

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Haldar C (2014) Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B Biol 140:374–380

    CAS  Google Scholar 

  • Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol. https://doi.org/10.1155/2012/623019

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagorny C, Lyssenko V (2012) Tired of diabetes genetic? Circadian rhythms and diabetes: the MTNR1B story? Curr Diab Rep 12(6):667–672

    CAS  PubMed  Google Scholar 

  • Najafi M, Salehi E, Farhood B, Nashtaei MS et al (2019) Adjuvant chemotherapy with melatonin for targeting human cancers: a review. J Cell Physiol 234:2356–2372. https://doi.org/10.1002/jcp.27259

    Article  CAS  PubMed  Google Scholar 

  • Norsa A, Martino V (2006) Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status. Cancer Biother Radiopharm 21:68–73

    CAS  PubMed  Google Scholar 

  • Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F et al (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275(40):31311–31317

    CAS  PubMed  Google Scholar 

  • Nowfar S, Teplitzky SR, Melancon K et al (2002) Tumor prevention by 9-cisretinoic acid in the N-nitroso-N-methylurea model of mammary carcinogenesis is potentiated by the pineal hormone melatonin. Breast Cancer Res Treat 72:33–43

    CAS  PubMed  Google Scholar 

  • Onseng K, Johns NP, Khuayjarernpanishk T, Subongkot S, Priprem A, Hurst C, Johns J (2017) Beneficial effects of adjuvant melatonin in minimizing oral mucositis complications in head and neck cancer patients receiving concurrent chemoradiation. J Altern Complement Med 23:957–963

    PubMed  Google Scholar 

  • Ortiz-Lopez L, Morales-Mulia S, Ramirez-Rodriguez G et al (2009) ROCK-regulated cytoskeletal dynamics participate in the inhibitory effect of melatonin on cancer cell migration. J Pineal Res 46:15–21

    CAS  PubMed  Google Scholar 

  • Osanai K, Kobayashi Y, Otsu M, Izawa T, Sakai K, Iwashita M (2017) Ramelteon, a selective MT1/T2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells. Hum Cell 30:209–215. https://doi.org/10.1007/s13577-017-0169-7

    Article  CAS  PubMed  Google Scholar 

  • Ostrin LA (2019) Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom 102:99–108

    PubMed  Google Scholar 

  • Pandi-Perumal SR, Trakht I, Srinivasan V et al (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85:335–353

    CAS  PubMed  Google Scholar 

  • Papantoniou K, Pozo OJ, Espinosa A, Marcos J, Castaño-Vinyals G, Basagaña X, Juanola Pagès E, Mirabent J, Martín J, Such Faro P et al (2015) Increased and mistimed sex hormone production in night shift workers. Cancer Epidemiol Biomark Prev 24:854–863. https://doi.org/10.1158/1055-9965.EPI-14-1271

    Article  CAS  Google Scholar 

  • Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55:313–323

    CAS  PubMed  Google Scholar 

  • Pariente R, Bejarano I, Espino J, Rodríguez AB, Pariente JA (2017) Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics. Cancer Chemother Pharmacol 80:985–998. https://doi.org/10.1007/s00280-017-3441-3

    Article  CAS  PubMed  Google Scholar 

  • Pariente R, Bejarano I, Rodríguez AB, Pariente JA, Espino J (2018) Melatonin increases the effect of 5-fluorouracil-based chemotherapy in human colorectal adenocarcinoma cells in vitro. Mol Cell Biochem 440:43–51. https://doi.org/10.1007/s11010-017-3154-2

    Article  CAS  PubMed  Google Scholar 

  • Park J-W, Suh S-II, Hwang M-S, Baek W (2009) Melatonin down-regulates HIF-1α expression through inhibition of protein translation in prostate cancer cells. J Pineal Res 46(4):415–421. https://doi.org/10.1111/j.1600-079X.2009.00678.x

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW, Kim YJ (2010) Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res 48(2):178–184. https://doi.org/10.1111/j.1600-079x.2009.00742.x

    Article  CAS  PubMed  Google Scholar 

  • Park MT, Kim MJ, Suh Y, Kim RK, Kim H, Lim EJ, Yoo KC, Lee GH, Kim Yh, Hwang SG et al (2014) Novel signaling axis for ROS generation during KRas-induced cellular transformation. Cell Death Differ 21(8):1185–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar P, Limson J, Nyokong T, Daya S (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32:237–242

    CAS  PubMed  Google Scholar 

  • Pauley SM (2004) Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med Hypotheses 63:588–596. https://doi.org/10.1016/j.mehy.2004.03.020

    Article  PubMed  Google Scholar 

  • Peters MG, Farias E, Colombo L et al (2003) Inhibition of invasion and metastasis by glypican-3 in a syngeneic breast cancer model. Breast Cancer Res Treat 80:221–232

    CAS  PubMed  Google Scholar 

  • Petranka J, Baldwin W, Biermann J, Jayadev S, Barrett JC, Murphy E (1999) The oncostatic action of melatonin in an ovarian carcinoma cell line. J Pineal Res 26(3):129–136. https://doi.org/10.1111/j.1600-079X.1999.tb00574.x

    Article  CAS  PubMed  Google Scholar 

  • Pett JP et al (2016) Feedback loops of the mammalian circadian clock constitute repressilator. PLoS Comput Biol 12:e1005266

    PubMed  PubMed Central  Google Scholar 

  • Poole EM, Schernhammer ES, Tworoger SS (2011) Rotating night shift work and risk of ovarian cancer. Cancer Epidemiol Biomark Prev 20(5):934–938

    Google Scholar 

  • Potter GDM (2016) Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev 37(6):584–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pourhanifeh MH, Sharifi M, Reiter RJ, Davoodabadi A, Asemi Z (2019) Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int 19:131. https://doi.org/10.1186/s12935-019-0853-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proietti S, Cucina A, D’Anselmi F, Dinicola S, Pasqualato A, Lisi E, Bizzarri M (2011) Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J Pineal Res 50:150–158

    CAS  PubMed  Google Scholar 

  • Proietti S, Cucina A, Reiter RJ, Bizzarri M (2013) Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell Mol Life Sci 70:2139–2157. https://doi.org/10.1007/s00018-012-1161-8

    Article  CAS  PubMed  Google Scholar 

  • Proietti S, Cucina A, Dobrowolny G, D’Anselmi F, Dinicola S, Masiello MG et al (2014) Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells. J Pineal Res 57:120–129. https://doi.org/10.1111/jpi.12150

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Zhang J, Zan L et al (2015) Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. Reproduct Biomed Online 31(5):638–646

    CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    CAS  PubMed  Google Scholar 

  • Rato AG, Pedrero JG, Martínez MA, Del Rio B, Lazo PS, Ramos S (1999) Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB J 13(8):857–868

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage: mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 939:200–215

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF et al (2017) Melatonin, a full service anti-cancer agent: inhibition ofinitiation, progression and metastasis. Int J Mol Sci 18:e843. https://doi.org/10.3390/ijms18040843

    Article  CAS  PubMed  Google Scholar 

  • Rimler A, Jockers R, Lupowitz Z, Sampson SR, Zisapel N (2005) Differential effects of melatonin and its downstream effector PKCalpha on subcellular localization of RGS proteins. J Pineal Res 40:144–152. https://doi.org/10.1111/j.1600-079X.2005.00290.x

    Article  CAS  Google Scholar 

  • Rimler A, Jockers R, Lupowitz Z, Zisapel N (2007) Gi and RGS proteins provide biochemical control of androgen receptor nuclear exclusion. J Mol Neurosci 31:1–12

    CAS  PubMed  Google Scholar 

  • Romero et al (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56(4):343–370. https://doi.org/10.1111/jpi.12132

    Article  CAS  PubMed  Google Scholar 

  • Rubio S, Estévez F, Cabrera J et al (2007) Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res 42:131–138

    CAS  PubMed  Google Scholar 

  • Sakatani A, Sonohara F, Goel A (2019) Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells. Carcinogenesis 40(3):422–431. https://doi.org/10.1093/carcin/bgy186

    Article  CAS  PubMed  Google Scholar 

  • Samanta S (2020) Physiological and pharmacological perspectives of melatonin.  https://doi.org/10.1080/13813455.2020.1770799 

  • Samanta S, Dassarma B, Jana S, Rakshit S, Saha SA (2018) Hypoxia inducible factor-1 (HIF-1) and cancer progression: a comprehensive review. Indian J Cancer Edu Res 6(1):94–109

    Google Scholar 

  • Sánchez-Hidalgo M, Lee M, de la Lastra CA et al (2012) Melatonin inhibits cell proliferation and induces caspase activation and apoptosis in human malignant lymphoid cell lines. J Pineal Res 53:366–373

    PubMed  Google Scholar 

  • Sandyk R, Anastasiadis PG, Anninos PA, Tsagas N (1991) Is the pineal gland involved in the pathogenesis of endometrial carcinoma. Int J Neurosci 62(1–2):89–96

    Google Scholar 

  • Santoro R, Marani M, Blandino G, Muti P, Strano S (2012) Melatonin triggers p53 Ser phosphorylation and prevents DNA damage accumulation. Oncogene 31:2931–2942

    CAS  PubMed  Google Scholar 

  • Schernhammer ES, Schulmeister K (2007) Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 90:941–943. https://doi.org/10.1038/sj.bjc.6601626

    Article  CAS  Google Scholar 

  • Schernhammer ES, Laden F, Speizer FE et al (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Nat Cancer Inst 93(20):1563–1568

    CAS  PubMed  Google Scholar 

  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I et al (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95(11):825–828

    PubMed  Google Scholar 

  • Schernhammer ES, Giobbie-Hurder A, Gantman K, Savoie J, Scheib R, Parker LM, Chen WY (2012) A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 23:609–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schock H, Surcel HM, Zeleniuch-Jacquotte A et al (2014) Early pregnancy sex steroids and maternal risk of epithelial ovarian cancer. Endocr Relat Cancer 21(6):831–844

    PubMed  PubMed Central  Google Scholar 

  • Seely D, Wu P, Fritz H, Kennedy DA, Tsui T, Seely AJ, Mills E (2012) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11:293–303

    CAS  PubMed  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    CAS  PubMed  Google Scholar 

  • Shen CJ, Chang CC, Chen YT, Lai CS, Hsu YC (2016) Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of g1 arrest by targeting CDKs. Int J Mol Sci 17:e176. https://doi.org/10.3390/ijms17020176

    Article  CAS  PubMed  Google Scholar 

  • Shiu SYW, Xi SC, Xu JN, Mei L, Pang SF, Yao KM, Wong JTY (2000) Inhibition of malignant trophoblastic cell proliferation in vitro and in vivo by melatonin. Life Sci 67(17):2059–2074. https://doi.org/10.1016/S0024-3205(00)00792-X

    Article  CAS  PubMed  Google Scholar 

  • Shiu SYW, Leung WY, Tam CW, Liu VWS, Yao K-M (2013) Melatonin MT1 receptor-induced transcriptional up-regulation of p27Kip1 in prostate cancer antiproliferation is mediated via inhibition of constitutively active nuclear factor kappa B (NF-κB): potential implications on prostate cancer chemoprevention and therapy. J Pineal Res 54(1):69–79

    CAS  PubMed  Google Scholar 

  • Siepka SM et al (2007) Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023. https://doi.org/10.1016/j.cell.2007.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295. https://doi.org/10.1113/expphysiol.1997.sp004024

    Article  CAS  PubMed  Google Scholar 

  • Siu AW, Ortiz GG, Benitez-King G, To CH, Reiter RJ (2004) Effect of melatonin on the nitric oxide treated retina. Br J Ophthalmol 88:1078–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofic E, Rimpapa Z, Kundurovic Z et al (2005) Antioxidant capacity of the neurohormone melatonin. J Neural Transm 112:349–358

    CAS  PubMed  Google Scholar 

  • Song G, Yoon KA, Chi H, Roh J, Kim JH (2016) Decreased concentration of serum melatonin in nighttime compared with daytime female medical technologists in South Korea. Chronobiol Int 33:1305–1310. https://doi.org/10.1080/07420528.2016.1199562

    Article  CAS  PubMed  Google Scholar 

  • Song J, Ma S-J, Luo J-H, Zhang H, Wang R-X, Liu H, Li L, Zhang Z-G, Zhou R-X (2018) Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol Rep 39:1975–1983. https://doi.org/10.3892/or.2018.6282

    Article  CAS  PubMed  Google Scholar 

  • Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084. https://doi.org/10.1016/j.redox.2018.101084

    Article  CAS  PubMed  Google Scholar 

  • Stevens RG (1987) Electric power use and breast cancer: a hypothesis. Am J Epidemiol 125(4):556–561

    CAS  PubMed  Google Scholar 

  • Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V et al (2007) Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8:1065–1066. https://doi.org/10.1016/S1470-2045(07)70373-X

    Article  PubMed  Google Scholar 

  • Su S-C, Hsieh M-J, Yang W-E, Chung W-H, Reiter RJ, Yang S-F (2017) Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res 62:e12370. https://doi.org/10.1111/jpi.12370

    Article  CAS  Google Scholar 

  • Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114:E7997–E8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  Google Scholar 

  • Tam CW, Mo CW, Yao K, Shiu SY (2007) Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention. J Pineal Res 42:191–202

    CAS  PubMed  Google Scholar 

  • Tamarkin L, Danforth D, Lichter A et al (1982) Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast cancer. Science 216(4549):1003–1005

    CAS  PubMed  Google Scholar 

  • Tamura H, Nakamura Y, Korkmaz A et al (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92(1):328–343

    CAS  PubMed  Google Scholar 

  • Tan D-X, Reiter RJ, Manchester LC et al (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906. https://doi.org/10.3390/molecules201018886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan D-X, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci 17:2124

    PubMed Central  Google Scholar 

  • Tan D-X, Xu B, Zhou X, Reiter RJ (2018) Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules 23:301. https://doi.org/10.3390/molecules23020301

    Article  CAS  PubMed Central  Google Scholar 

  • Thomson PA, Wray NR, Thomson AM, Dunbar DR, Grassie MA, Condie A, Walker MT, Smith DJ, Pulford DJ, Mur W, Blackwood DH, Porteus DJ (2005) Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 10:470–478

    CAS  PubMed  Google Scholar 

  • Todisco M (2006) Relapse of high-grade non-Hodgkin’s lymphoma after autologous stem cell transplantation: a case successfully treated with cyclophosphamide plus somatostatin, bromocriptine, melatonin, retinoids, and ACTH. Am J Ther 13:556–557

    PubMed  Google Scholar 

  • Todisco M (2007) Low-grade non-Hodgkin lymphoma at advanced stage: a case successfully treated with cyclophosphamide plus somatostatin, bromocriptine, retinoids, and melatonin. Am J Ther 14:113–115

    PubMed  Google Scholar 

  • Todisco M, Casaccia P, Rossi N (2001) Cyclophosphamide plus somatostatin bromocriptin, retinoids, melatonin and ACTH in the treatment of low-grade non-Hodgkin’s lymphomas at advanced stage: results of a phase II trial. Cancer Biother Radiopharm 16:171–177

    CAS  PubMed  Google Scholar 

  • Tomas-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104

    CAS  PubMed  Google Scholar 

  • Trubiani O, Recchioni R, Moroni F et al (2005) Melatonin provokes cell death in human B-lymphoma cells by mitochondrial-dependent apoptotic pathway activation. J Pineal Res 39:425–431

    CAS  PubMed  Google Scholar 

  • Valizadeh M, Shirazi A, Izadi P, Tavakkoly Bazzaz J, Rezaeejam H (2017) Expression levels of two dna repair-related genes under 8 gy ionizing radiation and 100 mg/kg melatonin delivery in rat peripheral blood. J Biomed Phys Eng 7:27–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayalaxmi TX, Thomas CR Jr, Reiter RJ, Herman TS (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20(10):2575–2601

    CAS  PubMed  Google Scholar 

  • von Gall C, Weaver DR, Moek J, Jilg A et al (2005) Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann NY Acad Sci 1040:508–511

    Google Scholar 

  • Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11. https://doi.org/10.1111/jpi.12189

    Article  CAS  PubMed  Google Scholar 

  • Vriend J, Reiter RJ (2016) Melatonin and the von Hippel–Lindau/HIF-1 oxygen sensing mechanism: a review. Biochem Biophys Acta 1865(2):176–183. https://doi.org/10.1016/j.bbcan.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xiao X, Zhang Y et al (2012) Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J Pineal Res 53:77–90

    CAS  PubMed  Google Scholar 

  • Wang R-X, Liu H, Xu L, Zhang H, Zhou R-X (2015) Involvement of nuclear receptor RZR/RORγ in melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells. Oncol Rep 34:2541–2546. https://doi.org/10.3892/or.2015.4238

    Article  CAS  PubMed  Google Scholar 

  • Wang RX, Liu H, Xu L, Zhang H, Zhou RX (2016) Melatonin downregulates nuclear receptor RZR/ROR expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo. Oncol Lett 12:897–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JY, Li WM, Zhou LL, Lu QN, He W (2015) Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res 58:429–438. https://doi.org/10.1111/jpi.12226

    Article  CAS  PubMed  Google Scholar 

  • Wiesenberg I, Missbach M, Carlberg C (1998) The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor Neurol Neurosci 12:143–150

    CAS  PubMed  Google Scholar 

  • Wilson ST, Blask DE, Lemus-Wilson AM (1992) Melatonin augments the sensitivity of MCF-7 human breast cancer cells to tamoxifen in vitro. J Clin Endocrinol Metab 75:669–670

    CAS  PubMed  Google Scholar 

  • Xu CS, Wang ZF, Huang XD et al (2015) Involvement of ROS-alpha vs beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med 13:95

    PubMed  PubMed Central  Google Scholar 

  • Yan JJ, Shen F, Wang K, Wu MC (2002) Patients with advanced primary hepatocellular carcinoma treated by melatonin and transcatheter arterial chemoembolization: a prospective study. Hepatobiliary Pancreat Dis Int 1:183–186

    PubMed  Google Scholar 

  • Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C (2008a) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Zong CS, Xia W et al (2008b) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi C, Zhang Y, Yu Z, Xiao Y, Wang J et al (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS One 9(7):e99943

    PubMed  PubMed Central  Google Scholar 

  • Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between β-amyloid Peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res 35:98–103

    CAS  PubMed  Google Scholar 

  • Zha L, Fan L, Sun G et al (2012) Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis. J Pineal Res 52:322–331

    CAS  PubMed  Google Scholar 

  • Zhang Q, Yang H (2012) The roles of VHL-dependent ubiquitination in signaling and cancer. Front Oncol 2:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Wan J, Zeng K et al (2016) The reduction in circulating melatonin level may contribute to the pathogenesis of ovarian cancer: a retrospective study. J Cancer 7(7):831–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249. https://doi.org/10.3389/fendo.2019.00249

    Article  Google Scholar 

  • Zhou Q, Gui S, Zhou Q et al (2014) Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One 9:e101132

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y, McAvoy S, Kuhn R, Smith DI (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25:2901–2908

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Midnapore College, Midnapore, West Bengal, India, for providing all kinds of facilities to prepare this manuscript.

Funding

No financial grant was available. This review article was self supported by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptadip Samanta.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 146, 1893–1922 (2020). https://doi.org/10.1007/s00432-020-03292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-020-03292-w

Keywords

Navigation