Skip to main content

Advertisement

Log in

Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To quantitate methylation of the CpG island of the promoter region of thep15 gene in childhood acute lymphoblastic leukemia (ALL) and explore its effect on prognosis.

Methods

We assessed methylation of the CpG island on the p15 gene in bone marrow mononuclear cells in 93 ALL cases and in a control group of 20 children with idiopathic thrombocytopenia (ITP) by restriction enzyme Eco52I digestion combined with polymerase chain reaction techniques. We explored the effect of varying levels of methylation on event-free survival (EFS).

Results

The mean methylation level was 25 % in de novo ALL and significantly higher than the control group 2 %, P < 0.01). Forty-two percent of cases (39/93) had hypermethylation (level over 10 %). Fifty-seven percent (12/21) and 38 % (27/72) T- and precursor-B ALL patients had hypermethylation (not significant). For all patients, the 8-year EFS was (83 ± 4) %, standard risk (91 ± 4) %, intermediate risk (IR) (82 ± 5) %, and high risk (HR) (43 ± 19) % (χ 2 = 11.58, P < 0.01). Hypermethylation was associated with a lower 8-year EFS (71 ± 7 vs. 91 ± 4 %, P = 0.02) in univariate analyses.

Conclusions

Children with ALL have higher levels of p15 CpG island methylation than a control group of children with ITP. Among children with ALL, hypermethylation was associated with inferior EFS. Higher levels of p15 CpG island methylation may be a poor prognostic marker in childhood ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal S, Unterberg M, Koschmieder S et al (2007) DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res 67:1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memery. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Boiltwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138:3–11

    Article  Google Scholar 

  • Bruggenmann M, van der Velden VH, Raff T et al (2004) Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 18:709–719

    Article  Google Scholar 

  • Cameron EE, Baylin SB et al (1999) p15INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445–2451

    PubMed  CAS  Google Scholar 

  • Chim CS, Wong AS, Kwong YL et al (2003) Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol 82:738–742

    Article  PubMed  CAS  Google Scholar 

  • Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2003) Profiling aberrant methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109:80–88

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Jeha S, Daniel J et al (2003) Aberrant DNA methylation in pediatric patients with acute lymphoblastic leukemia. Cancer 97:695–702

    Article  PubMed  CAS  Google Scholar 

  • Gardiner RB, Morash BA, Riddell C et al (2012) Using MS-MLPA as an efficient screening tool for detecting 9p21 abnormalities in pediatric acute lymphoblastic leukemia. Pediatric Blood Cancer 58(6):852–859

    Article  PubMed  Google Scholar 

  • Gokbuget N, Kneba M, Raff T et al (2002) Risk-adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol 15:639–652

    Article  PubMed  Google Scholar 

  • Gutierrez MI, Siraj AK, Bhargava M, Ozbek U, Banavali S, Chaudhary MA, Solh HEI, Bhatia K (2003) Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup. Leukemia 17:1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996a) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herman JG, Jen J, Merlo A, Baylin SB (1996b) Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4BI. Cancer Res 56:722–727

    PubMed  CAS  Google Scholar 

  • Inokuchi K, Iwakiri R, Futaki M et al (1998) Minimal residual disease in acute myelogenous leukemia with PML/RARα or AML/ETO mRNA and phenotypic analysis of possible T and natural killer cells in bone marrow. Leuk Lymphoma 29:553–561

    Article  PubMed  CAS  Google Scholar 

  • Iravani M, Dhat R, Price CM (1997) Methylation of the multi tumor suppressor gene-2 (MTS2, CDKN1, p15INK4B) in childhood acute lymphoblastic leukemia. Oncogene 15:2609–2614

    Article  PubMed  CAS  Google Scholar 

  • Kalebic T (2003) Epigenetic changes: potential therapeutic targets. Ann NY Acad Sci 983:278–285

    Article  PubMed  CAS  Google Scholar 

  • Khaldon B, Yazan H, Asem A et al (2014) DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev 15:75–84

    Article  Google Scholar 

  • Kim M, Yim SH, Cho NS et al (2009) Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genet Cytogenet 195:59–65

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Moretta F, Rutella S (2013) Management of relapsed acute lymphoblastic leukemia in childhood with conventional and innovative approaches. Curr Opin Oncol 25:707–715

    Article  PubMed  CAS  Google Scholar 

  • Pane F, Cimino G, Izzo B et al (2005) Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 19:628–635

    PubMed  CAS  Google Scholar 

  • Preisler HD, Li B, Chen H et al (2001) p15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 15:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Pui CH (2010) Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 109:777–787

    Article  PubMed  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Castillejo JA et al (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104:2492–2498

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X et al (2006) CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clin Cancer Res 12:4845–4850

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of GI-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Singal R, Ginder GD (1999) DNA methylation. Blood 93:4059–4070

    PubMed  CAS  Google Scholar 

  • Stary J, Zimmermann M, Campbell M et al (2014) Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. Clin Oncol 32:174–184

    Article  CAS  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) (2008) WHO classification of tumors of haematopoietic and lymphoid tissue. IARC, Lyon

    Google Scholar 

  • Takeuchi S, Matsushita M, Zimmermann M et al (2011) Clinical significance of aberrant DNA methylation in childhood acute lymphoblastic leukemia. Leuk Res 35:1345–1349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsellou E, Troungos C, Moschovi M, Athanasiadou-Piperopoulou F, Polychronopoulou S, Kosmidis H, Kalmanti M, Hatzakis A, Dessypris N, Kalofoutis A, Petridou E (2005) Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 41:584–589

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberf AP, Cui H (2008) Epigenetic silencing of tumor suppressor gene p15 by its antisense RNA. Nature 451:20–206

    Google Scholar 

  • Zheng S, Ma X, Zhang L, Gunn L, Smith MT, Wiemels JL, Leung K, Buffler PA, Wiencke JK (2004) Hypermethylation of the 5′ CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res 64:2000–2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all data managers, the staff of the reference laboratories for continuous excellent cooperation, the nurses and doctors of all hospitals for their input in performing this study, and the members of the study committee for their contributions during the development of the study. We thank Paul S. Gaynon for excellent revising the manuscript. This study was supported by technology development project from Science and Technology Innovation Committee of Shenzhen Municipality, Grant IDs CXZZ20130320172336579 and JCYJ20140416141331490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiqiu Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Approval of the study was obtained from the ethnical committee of the hospitals. Informed consent of study participants was obtained from the patients and/or their parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, H., Liu, X., Chen, Y. et al. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142, 497–504 (2016). https://doi.org/10.1007/s00432-015-2063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2063-6

Keywords

Navigation