Skip to main content

Advertisement

Log in

A combined approach identifies three mRNAs that are down-regulated by microRNA-29b and promote invasion ability in the breast cancer cell line MCF-7

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background and aims

MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by targeting mRNAs. Our previous study found that miR-29b strongly regulates the migration and invasion of breast cancer cells. Here, we aimed to identify the mRNAs targeted by miR-29b.

Methods

We used microarray experiments in conjunction with computational methods to identify the mRNAs that were most susceptible to miR-29b-mediated repression. We further confirmed the activities of three target genes, C1QTNF6, SPARC, and COL4A2, by luciferase reporter analyses and invasion assays.

Results

We evaluated the impact of miR-29b on global mRNA expression in MCF-7 human breast cancer cells through microarray analysis and further analyzed four genes that were at least twofold down-regulated and predicted as miR-29b targets by at least two of the four widely used miRNA target prediction algorithms. We also analyzed one mRNA that was down-regulated by 1.8-fold but was predicted to have significant interactions with miR-29b in pathway analysis and was predicted as a miR-29b target by all four algorithms. Luciferase reporter and invasion assays revealed that C1QTNF6, SPARC, and COL4A2 were targeted by miR-29b and that the degradation of any one of these mRNAs could promote invasion in MCF-7 cells.

Conclusions

C1QTNF6, SPARC, and COL4A2 are targeted by miR-29b, and the down-regulation of these three mRNAs can contribute to the invasion ability of MCF-7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Dumont N, Tlsty TD (2009) Reflections on miR-ing effects in metastasis. Cancer Cell 16(1):3–4

    Article  PubMed  CAS  Google Scholar 

  • Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T (2010) The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 103:275–284

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  • Gunduz M, Beder LB, Gunduz E, Nagatsuka H, Fukushima K, Pehlivan D, Cetin E, Yamanaka N, Nishizaki K, Shimizu K, Nagai N (2008) Downregulation of ING3 mRNA expression predicts poor prognosis in head and neck cancer. Cancer Sci 99(3):531–538

    Article  PubMed  CAS  Google Scholar 

  • Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69(19):7495–7498

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  • Koblinski JE, Kaplan-Singer BR, VanOsdol SJ, Wu M, Engbring JA, Wang S, Goldsmith CM, Piper JT, Vostal JG, Harms JF, Welch DR, Kleinman HK (2005) Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Res 65(16):7370–7377

    Article  PubMed  CAS  Google Scholar 

  • Kwiecinski M, Noetel A, Elfimova N, Trebicka J, Schievenbusch S, Strack I, Molnar L, von Brandenstein M, Töx U, Nischt R, Coutelle O, Dienes HP, Odenthal M (2011) Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 6(9):e24568

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  PubMed  CAS  Google Scholar 

  • Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2009) Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 15:2488–2497

    PubMed  CAS  Google Scholar 

  • Mattie MD, Benz CC, Bowers J et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24

    Article  PubMed  Google Scholar 

  • Mizukami S, Ichimura R, Kemmochi S, Taniai E, Shimamoto K, Ohishi T, Takahashi M, Mitsumori K, Shibutani M (2010) Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferring receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats. Arch Toxicol 84:319–331

    Article  PubMed  CAS  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N (2010) Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun 391:316–321

    Article  PubMed  CAS  Google Scholar 

  • Pedro C-R, Teresa R, Marina M-S, Wu SV, Salazar EP (2008) Src kinase regulates metalloproteinase-9 secretion induced by type IV collagen in MCF-7 human breast cancer cells. Matrix Biol 27:220–231

    Article  Google Scholar 

  • Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):4–6

    Article  Google Scholar 

  • Sahab ZJ, Hall MD (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the α-tubulin tyrosination cycle. Cancer Res 71(4):1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105:5874–5878

    Article  PubMed  CAS  Google Scholar 

  • Sethupathy P, Mcgraw M, Hatzigeorgion AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets[J]. Nat Methods 3:881–886

    Article  PubMed  CAS  Google Scholar 

  • Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. PNAS 103(8):2746–2751

    Article  PubMed  CAS  Google Scholar 

  • Steele R, Mott JL, Ray RB (2010) MBP-1 up-regulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer 1(4):381–387

    Article  PubMed  CAS  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Adachi Y, Nagayama T (2011) Expression of a secretory protein C1qTNF6, a C1qTNF family member, in hepatocellular carcinoma. Anal Cell Pathol (Amst) 34(3):113–121

    CAS  Google Scholar 

  • Wang C, Bian Z, Wei D, Zhang JG (2011) MiR-29b regulates migration of human breast cancer cells. Mol Cell Biochem 352(1–2):197–207

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Zhdanov VP (2009) Conditions of appreciable influence of microRNA on a large number of target mRNAs. Mol BioSyst 5(6):638–643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81170541) and the Natural Basic Research Program of China (973 program 2010CB945103).

Conflict of interest

There are no financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Gao, C., Zhuang, JL. et al. A combined approach identifies three mRNAs that are down-regulated by microRNA-29b and promote invasion ability in the breast cancer cell line MCF-7. J Cancer Res Clin Oncol 138, 2127–2136 (2012). https://doi.org/10.1007/s00432-012-1288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1288-x

Keywords

Navigation