Skip to main content
Log in

TGFB1 and TGFBR2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case–control analysis in a Chinese population

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Transforming growth factor β1 (TGF-β1) and its receptor II (TGF-βRII) are two key components of TGF-β signaling and play an important role in carcinogenesis. Several functional polymorphisms were identified in TGFB1 and TGFBR2 and associated with elevated serum or plasma level of TGF-β1 and enhanced transcription activity of TGFBR2. This population-based case–control study was to evaluate the contribution of functional polymorphisms in TGFB1 C-509T, Leu10Pro and TGFBR2 G-875A to the risk of esophageal squamous cell carcinoma (ESCC).

Methods

Genotyping was performed using the primer-introduced restriction analysis-PCR assay in 255 ESCC cases and 704 cancer-free controls in a Chinese population.

Results

The variant genotypes (-509CT/TT) of TGFB1 C-509T were associated with a 63% significantly decreased risk of ESCC (adjusted OR = 0.37, 95% CI = 0.27–0.50) compared with -509CC wild-type homozygote. In addition, a moderately decreased risk of ESCC was related to -875GA (adjusted OR = 0.70, 95% CI = 0.49–0.99) but not -875AA genotype (adjusted OR = 1.09, 95% CI = 0.51–2.35) in TGFBR2, compared with -875GG common genotype. Furthermore, subjects carrying variant genotypes either or both of TGFB1 C-509T and TGFBR2 G-875A had a significantly reduced risk of ESCC (adjusted OR = 0.37, 95% CI = 0.26–0.53 for either one variant genotype and adjusted OR = 0.30, 95% CI = 0.19–0.48 for both variant genotypes) in a dose-response manner (χ 2trend  = 33.87, P < 0.001) compared with subjects with both wild-type genotypes.

Conclusions

These results are consistent with our previous findings in gastric cancer and support the hypothesis that genetic variants in TGFB1 and TGFBR2 may modulate the risk of ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

TGF-β1:

Transforming growth factor β1

TGF-βRI/II:

Transforming growth factor β receptor types I/II

ESCC:

Esophageal squamous cell carcinoma

SNPs:

Single nucleotide polymorphisms

OR:

Odds ratio

CI:

Confidence interval

LD:

Linkage disequilibrium

PIRA:

Primer-introduced restriction analysis

References

  • Akhurst RJ (2002) TGF-beta antagonists: why suppress a tumor suppressor? J Clin Invest 109:1533–1536

    Article  PubMed  CAS  Google Scholar 

  • Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol 11:S44–S51

    PubMed  CAS  Google Scholar 

  • Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • de Caestecker MP, Piek E, Roberts AB (2000) Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst 92:1388–1402

    Article  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  PubMed  CAS  Google Scholar 

  • Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC (2003) A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615

    PubMed  CAS  Google Scholar 

  • Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349:2241–2252

    Article  PubMed  CAS  Google Scholar 

  • Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J (2004) A gain of function TGFB1 polymorphism may be associated with late stage prostate cancer. Cancer Epidemiol Biomarkers Prev 13:759–764

    PubMed  CAS  Google Scholar 

  • Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T, Kuwano H (2003) Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 104:161–166

    Article  PubMed  CAS  Google Scholar 

  • Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Hemminki K, Grzybowska E, Klaes R, Soderberg M, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Forsti A (2004) Polymorphisms and haplotype structures in genes for transforming growth factor beta1 and its receptors in familial and unselected breast cancers. Int J Cancer 112:94–99

    Article  PubMed  CAS  Google Scholar 

  • Jin G, Wang L, Chen W, Hu Z, Zhou Y, Tan Y, Wang J, Hua Z, Ding W, Shen J, Zhang Z, Wang X, Xu Y, Shen H (2007) Variant alleles of TGFB1 and TGFBR2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer 120:1330–1335

    Article  PubMed  CAS  Google Scholar 

  • Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, Cha SI, Kim CH, Park RW, Park SH, Kim YL, Kim IS, Jung TH, Park JY (2006) Polymorphisms in TGF-beta1 gene and the risk of lung cancer. Lung Cancer 52:1–7

    Article  PubMed  Google Scholar 

  • Ke X, Collins A, Ye S (2001) PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. Bioinformatics 17:838–839

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Lee HS, Im JP, Min BH, Kim HD, Jeong JB, Yoon JH, Kim CY, Kim MS, Kim JY, Jung JH, Kim LH, Park BL, Shin HD (2003) Association of transforming growth factor-beta1 gene polymorphisms with a hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. Exp Mol Med 35:196–202

    PubMed  CAS  Google Scholar 

  • Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D, Zimmermann A, Buchler MW (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26:420–427

    Article  PubMed  Google Scholar 

  • Li Z, Habuchi T, Tsuchiya N, Mitsumori K, Wang L, Ohyama C, Sato K, Kamoto T, Ogawa O, Kato T (2004) Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-beta 1 gene polymorphism at codon10. Carcinogenesis 25:237–240

    Article  PubMed  CAS  Google Scholar 

  • Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI (2000) Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of Alzheimer’s disease. Hum Genet 106:565–569

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  • Seijo ER, Song H, Lynch MA, Jennings R, Qong X, Lazaridis E, Muro-Cacho C, Weghorst CM, Munoz-Antonia T (2001) Identification of genetic alterations in the TGFbeta type II receptor gene promoter. Mutat Res 483:19–26

    PubMed  CAS  Google Scholar 

  • Shin A, Shu XO, Cai Q, Gao YT, Zheng W (2005) Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 14:1567–1570

    Article  PubMed  CAS  Google Scholar 

  • Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, Shore SA (2004) Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 169:214–219

    Article  PubMed  Google Scholar 

  • Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen W, Wang J, Tan Y, Zhou Y, Ding W, Hua Z, Shen J, Xu Y, Shen H (2006) Reduced folate carrier gene G80A polymorphism is associated with an increased risk of gastroesophageal cancers in a Chinese population. Eur J Cancer 42:3206–3211

    Article  PubMed  CAS  Google Scholar 

  • Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y (2000) Association of a T29 → C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101:2783–2787

    PubMed  CAS  Google Scholar 

  • Zhou Q, Dong Wang L, Du F, Zhou Y, Rui Zhang Y, Liu B, Wei Feng C, Gao SS, Fan ZM, Yang CS, Zheng S (2002) Changes of TGFbeta1 and TGFbetaRII expression in esophageal precancerous and cancerous lesions: a study of a high-risk population in Henan, northern China. Dis Esophagus 15:74–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China, Grant numbers: 30571605 and 30671814; Jiangsu Natural Science Foundation, Grant number: BK2005143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, G., Deng, Y., Miao, R. et al. TGFB1 and TGFBR2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case–control analysis in a Chinese population. J Cancer Res Clin Oncol 134, 345–351 (2008). https://doi.org/10.1007/s00432-007-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0290-1

Keywords

Navigation