Skip to main content

Advertisement

Log in

Cellular reservoirs of latent cytomegaloviruses

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Cytomegaloviruses (CMVs), members of the β-subfamily of the herpesvirus family, have co-speciated with their respective mammalian hosts resulting in a mutual virus–host adaptation reflected by sets of ‘private’ viral genes that a particular CMV species does not share with other CMVs and that define the host-species specificity of CMVs. Nonetheless, based on “biological convergence” in evolution, fundamental rules in viral pathogenesis and immune control are functionally analogous between different virus–host pairs. Therefore, the mouse model of infection with murine CMV (mCMV) has revealed generally valid principles of CMV–host interactions. Specifically, the mouse model has paved the way to cellular immunotherapy of CMV disease in immunocompromised recipients of hematopoietic cell transplantation (HCT). Precisely in the context of HCT, however, current view assumes that there exists a major difference between hCMV and mCMV regarding “latent virus reservoirs” in that only hCMV establishes latency in hematopoietic lineage cells (HLCs), whereas mCMV establishes latency in endothelial cells. This would imply that only hCMV can reactivate from transplanted HLCs of a latently infected donor. In addition, as viral transcriptional activity during latency is discussed as a driver of clonal T-cell expansion over lifetime, a phenomenon known as “memory inflation”, it is important to know if hCMV and mCMV establish latency in the same cell type(s) for imprinting the immune system. Here, we review the currently available evidence to propose that the alleged difference in latent virus reservoirs between hCMV and mCMV may rather relate to a difference in the focus of research. While studies on hCMV latency in HLCs likely described a non-canonical, transient type-2 latency, studies in the mouse model focussed on canonical, lifelong type-1 latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roizman B, Sears AE (1987) An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 41:543–571. https://doi.org/10.1146/annurev.mi.41.100187.002551

    Article  CAS  PubMed  Google Scholar 

  2. Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208

    CAS  PubMed  Google Scholar 

  3. Ho M (2008) The history of cytomegalovirus and its diseases. Med Microbiol Immunol 197:65–73. https://doi.org/10.1007/s00430-007-0066-x

    Article  PubMed  Google Scholar 

  4. Boppana SB, Britt WJ (2013) Synopsis of clinical aspects of human cytomegalovirus disease. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 1–25

    Google Scholar 

  5. Seo S, Boeck M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 337–353

    Google Scholar 

  6. Emery VC, Milne RS, Griffiths PD (2013) Clinical cytomegalovirus research: liver and kidney transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 301–311

    Google Scholar 

  7. Avery RK (2013) Clinical cytomegalovirus research: thoracic organ transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 286–300

    Google Scholar 

  8. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology. Immunology of infection, vol 37. Academic Press, London, pp 369–420

    Google Scholar 

  10. Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology. Immunology of infection, vol 32. Academic Press, London, pp 493–525

    Google Scholar 

  11. Klenovsek K, Weisel F, Schneider A, Appelt U, Jonjic S, Messerle M, Bradel-Tretheway B, Winkler TH, Mach M (2007) Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood 110:3472–3479. https://doi.org/10.1182/blood-2007-06-095414

    Article  CAS  PubMed  Google Scholar 

  12. Reddehase MJ, Balthesen M, Rapp M, Jonjić S, Pavić I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193

    CAS  PubMed  Google Scholar 

  13. Jonjić S, Pavić I, Polić B, Crnković I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717

    PubMed  Google Scholar 

  14. Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S (2019) Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades’ résumé. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00600-1

    Article  PubMed  Google Scholar 

  15. Waisman A, Croxford AL, Demircik F (2008) New tools to study the role of B cells in cytomegalovirus infections. Med Microbiol Immunol 197:145–149. https://doi.org/10.1007/s00430-008-0088-z

    Article  PubMed  Google Scholar 

  16. Benedict CA, Crozat K, Degli-Esposti M, Dalod M (2013) Host genetic models in cytomegalovirus immunology. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 259–285

    Google Scholar 

  17. Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331

    CAS  PubMed  Google Scholar 

  20. Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67:5360–5366

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jonjić S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH (1989) Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4 + T lymphocytes. J Exp Med 169:1199–1212

    PubMed  Google Scholar 

  22. Henson D, Strano AJ. Mouse cytomegalovirus (1972) Necrosis of infected and morphologically normal submaxillary gland acinar cells during termination of chronic infection. Am J Pathol 68:183–202

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Emery VC (1998) Relative importance of cytomegalovirus load as a risk factor for cytomegalovirus disease in the immunocompromised host. Monogr Virol 21:288–301

    Google Scholar 

  24. Maciejewski JP, Bruening EE, Donahue RE, Mocarski ES, Young NS, St Jeor SC (1992) Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 80:170–178

    CAS  PubMed  Google Scholar 

  25. von Laer D, Meyer-Koenig U, Serr A, Finke J, Kanz L, Fauser AA, Neumann-Haefelin D, Brugger W, Hufert FT (1995) Detection of cytomegalovirus DNA in CD34 + cells from blood and bone marrow. Blood 86:4086–4090

    Google Scholar 

  26. Mendelson M, Monard S, Sissons P, Sinclair J (1996) Detection of endogenous human cytomegalovirus in CD34 + bone marrow progenitors. J Gen Virol 77:3099–3102. https://doi.org/10.1099/0022-1317-77-12-3099

    Article  CAS  PubMed  Google Scholar 

  27. Sindre H, Tjøonnfjord GE, Rollag H, Ranneberg-Nilsen T, Veiby OP, Beck S, Degré M, Hestdal K (1996) Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88:4526–4533

    CAS  PubMed  Google Scholar 

  28. Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci USA 95:3937–3942

    CAS  PubMed  Google Scholar 

  29. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH (1991) Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72:2059–2064. https://doi.org/10.1099/0022-1317-72-9-2059

    Article  CAS  PubMed  Google Scholar 

  30. Söderberg-Nauclér C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA (2001) Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol 75:7543–7554. https://doi.org/10.1128/JVI.75.16.7543-7554.2001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goodrum F (2016) Human cytomegalovirus latency: approaching the Gordian Knot. Annu Rev Virol 3:333–357. https://doi.org/10.1146/annurev-virology-110615-042422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elder E, Sinclair J (2019) HCMV latency: what regulates the regulators? Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00581-1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kondo K, Kaneshima H, Mocarski ES (1994) Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci USA 91:11879–11883

    CAS  PubMed  Google Scholar 

  34. Kondo K, Xu J, Mocarski ES (1996) Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci USA 93:11137–11142

    CAS  PubMed  Google Scholar 

  35. Slobedman B, Avdic S, Abendroth A (2013) Transcription associated with human cytomegalovirus latency. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Academic Press, Norfolk, pp 347–362

    Google Scholar 

  36. Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73:4806–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Poole E, Sinclair J (2015) Sleepless latency of human cytomegalovirus. Med Microbiol Immunol 204:421–429. https://doi.org/10.1007/s00430-015-0401-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shnayder M, Nachshon A, Krishna B, Poole E, Boshkov A, Binyamin A, Maza I, Sinclair J, Schwartz M, Stern-Ginossar N (2018) Defining the transcriptional landscape during cytomegalovirus latency with single-cell RNA sequencing. MBio 9:e00013–e18. https://doi.org/10.1128/mBio.00013-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor-Wiedeman J, Sissons P, Sinclair J (1994) Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 68:1597–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reeves M, Sinclair J (2013) Epigenetic regulation of human cytomegalovirus gene expression: impact on latency and reactivation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Academic Press, Norfolk, pp 330–346

    Google Scholar 

  41. Söderberg-Nauclér C, Fish KN, Nelson JA (1997) Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91:119–126

    PubMed  Google Scholar 

  42. Simmons P, Kaushansky K, Torok-Storb B (1990) Mechanisms of Cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci USA 87:1386–1390. https://doi.org/10.1073/pnas.87.4.1386

    Article  CAS  PubMed  Google Scholar 

  43. Reddehase MJ, Lemmermann NAW (2018) Mouse model of cytomegalovirus disease and immunotherapy in the immunocompromised host: predictions for medical translation that survived the “test of time”. Viruses 10:e693. https://doi.org/10.3390/v10120693

    Article  CAS  PubMed  Google Scholar 

  44. Reddehase MJ, Podlech J, Grzimek NK (2002) Mouse models of cytomegalovirus latency: overview. J Clin Virol 25:S23–S36

    CAS  PubMed  Google Scholar 

  45. Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NAW, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 353–381

    Google Scholar 

  46. Reddehase MJ (2016) Mutual interference between cytomegalovirus and reconstitution of protective immunity after hematopoietic cell transplantation. Front Immunol 7:294. https://doi.org/10.3389/fimmu.2016.00294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balthesen M, Šuša M, Lučin P, Reddehase MJ (1994) Cytomegalovirus DNA detected in blood leukocytes after resolution of productive infection does not originate from latently infected hematopoietic stem cells in the bone marrow. Croat Med J 35:19–25

    Google Scholar 

  48. Revello MG, Percivalle E, Zavattoni M, Parea M, Grossi P, Gerna G (1989) Detection of human cytomegalovirus immediate early antigen in leukocytes as a marker of viremia in immunocompromised patients. J Med Virol 29:88–93

    CAS  PubMed  Google Scholar 

  49. Kas-Deelen AM, The TH, Blom N, van der Strate BW, De Maar EF, Smit J, van Son WJ, Harmsen MC (2001) Uptake of pp65 in in vitro generated pp65-positive polymorphonuclear cells mediated by phagocytosis and cell fusion? Intervirology 44:8–13. https://doi.org/10.1159/000050024

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell BM, Leung A, Stevens JG (1996) Murine cytomegalovirus DNA in peripheral blood of latently infected mice is detectable only in monocytes and polymorphonuclear leukocytes. Virology 223:198–207. https://doi.org/10.1006/viro.1996.0468

    Article  CAS  PubMed  Google Scholar 

  51. Pollock JL, Presti RM, Paetzold S, Virgin HW 4th (1997) Latent murine cytomegalovirus infection in macrophages. Virology 227:168–179. https://doi.org/10.1006/viro.1996.8303

    Article  CAS  PubMed  Google Scholar 

  52. Grzimek NK, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705. https://doi.org/10.1128/JVI.75.6.2692-2705.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marquardt A, Halle S, Seckert CK, Lemmermann NA, Veres TZ, Braun A, Maus UA, Förster R, Reddehase MJ, Messerle M, Busche A (2011) Single cell detection of latent cytomegalovirus reactivation in host tissue. J Gen Virol 92:1279–1291. https://doi.org/10.1099/vir.0.029827-0

    Article  CAS  PubMed  Google Scholar 

  54. Seckert CK, Renzaho A, Reddehase MJ, Grzimek NK (2008) Hematopoietic stem cell transplantation with latently infected donors does not transmit virus to immunocompromised recipients in the murine model of cytomegalovirus infection. Med Microbiol Immunol 197:251–259. https://doi.org/10.1007/s00430-008-0094-1

    Article  PubMed  Google Scholar 

  55. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA (2010) Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8:284–291. https://doi.org/10.1016/j.chom.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hakki M, Goldman DC, Streblow DN, Hamlin KL, Krekylwich CN, Fleming WH, Nelson JA (2014) HCMV infection of humanized mice after transplantation of G-CSF-mobilized peripheral blood stem cells from HCMV-seropositive donors. Biol Blood Marrow Transpl 20:132–135. https://doi.org/10.1016/j.bbmt.2013.10.019

    Article  CAS  Google Scholar 

  57. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8 + T cells over time. J Immunol 170:2022–2029 (Corrigendum J Immunol 171:3895)

    CAS  PubMed  Google Scholar 

  60. Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458

    CAS  PubMed  Google Scholar 

  61. Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB (2008) Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29:650–659. https://doi.org/10.1016/j.immuni.2008.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566. https://doi.org/10.1007/s00430-012-0273-y

    Article  PubMed  Google Scholar 

  63. Seckert CK, Griessl M, Buttner JK, Freitag K, Lemmermann N, Hummel M, Liu XF, Abecassis M, Angulo A, Messerle M, Cook CH, Reddehase M (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to memory inflation. In: Reddehase MJ (ed) Cytomegaloviruses, vol 1. Caister Academic PressNorfolk, UK, pp 374–416

    Google Scholar 

  64. Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16:367–377. https://doi.org/10.1038/nri.2016.38

    Article  CAS  PubMed  Google Scholar 

  65. Welten SPM, Baumann NS, Oxenius A (2019) Fuel and brake of memory T cell inflation. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00587-9

  66. Cicin-Sain L (2019) Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00607-8

    Article  PubMed  Google Scholar 

  67. Renzaho A, Schmiedeke JK, Griessl M, Kühnapfel B, Seckert CK, Lemmermann NAW (2019) Transcripts expressed in cytomegalovirus latency coding for an antigenic IE/E phase peptide that drives “memory inlation”. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00615-8

    Article  PubMed  Google Scholar 

  68. Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456. https://doi.org/10.1128/JVI.01248-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R (2011) Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 92:1994–2005. https://doi.org/10.1099/vir.0.031815-0

    Article  CAS  PubMed  Google Scholar 

  70. Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A (2011) Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog 7:e1002313. https://doi.org/10.1371/journal.ppat.1002313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loewendorf AI, Arens R, Purton JF, Surh CD, Benedict CA (2011) Dissecting the requirements for maintenance of the CMV-specific memory T-cell pool. Viral Immunol 24:351–355. https://doi.org/10.1089/vim.2010.0140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mercer JA, Wiley CA, Spector DH (1988) Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J Virol 62:987–997

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Qiu J, Salama ME, Hu CS, Li Y, Wang X, Hoffman R (2018) The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis. Blood Adv 2:1130–1145. https://doi.org/10.1182/bloodadvances.2017015073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Seckert CK, Renzaho A, Tervo HM, Krause C, Deegen P, Kühnapfel B, Reddehase MJ, Grzimek NK (2009) Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 83:8869–8884. https://doi.org/10.1128/JVI.00870-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith CJ, Turula H, Snyder CM (2014) Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 10:e1004233. https://doi.org/10.1371/journal.ppat.1004233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hendrix MG, Dormans PH, Kitslaar P, Bosman F, Bruggeman CA (1989) The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am J Pathol 134:1151–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pampou SY, Gnedoy SN, Bystrevskaya VB, Smirnov VN, Chazov EI, Melnick JL, DeBakey ME (2000) Cytomegalovirus genome and the immediate-early antigen in cells of different layers of human aorta. Virchows Arch 436:539–552

    CAS  PubMed  Google Scholar 

  78. Chen R, Xiong S, Yang Y, Fu W, Wang Y, Ge J (2003) The relationship between human cytomegalovirus infection and atherosclerosis development. Mol Cell Biochem 249:91–96

    CAS  PubMed  Google Scholar 

  79. Reeves MB, Coleman H, Chadderton J, Goddard M, Sissons JG, Sinclair JH (2004) Vascular endothelial and smooth muscle cells are unlikely to be major sites of latency of human cytomegalovirus in vivo. J Gen Virol 85:3337–3341. https://doi.org/10.1099/vir.0.80285-0

    Article  CAS  PubMed  Google Scholar 

  80. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100:10623–10628. https://doi.org/10.1073/pnas.1434429100

    Article  CAS  PubMed  Google Scholar 

  81. Conway EM, Carmeliet P (2004) The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biol 5:207. https://doi.org/10.1186/gb-2004-5-2-207

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jarvis MA, Nelson JA (2007) Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81:2095–2101. https://doi.org/10.1128/JVI.01422-06

    Article  CAS  PubMed  Google Scholar 

  83. Wilkinson GW, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang EC, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ (2015) Human cytomegalovirus: taking the strain. Med Microbiol Immunol 204:273–284. https://doi.org/10.1007/s00430-015-0411-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss MR, Hamprecht K, Yamamoto AY, Mussi-Pinhata MM, Britt WJ, Jensen JD, Kowalik TF (2015) Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci USA 112:E4120–E4128. https://doi.org/10.1073/pnas.1501880112

    Article  CAS  PubMed  Google Scholar 

  85. Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Academic Press, Norfolk, pp 297–321

    Google Scholar 

Download references

Acknowledgements

The authors are supported by the Deutsche Forschungsgemeinschaft SFB1292, individual project TP11.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias J. Reddehase or Niels A. W. Lemmermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by: Sebastian Voigt.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Immunological Imprinting during Chronic Viral Infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddehase, M.J., Lemmermann, N.A.W. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol 208, 391–403 (2019). https://doi.org/10.1007/s00430-019-00592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00592-y

Keywords

Navigation