Skip to main content

Advertisement

Log in

Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The human cytomegalovirus (HCMV) is a common pathogen, which causes severe or even deadly diseases in immunocompromised patients. In addition, congenital HCMV infection represents a major health concern affecting especially the lung tissue of the susceptible individuals. Antivirals are a useful strategy to treat HCMV-caused diseases. However, all approved drugs target viral proteins but significant toxicity and an increasing resistance against these compounds have been observed. In infected cells, numerous host molecules have been identified to play important roles during HCMV replication. Among others, HCMV infection depends on the presence of bioactive sphingolipids. In this study, the role of sphingosine-1-phosphate (S1P) signaling in HCMV-infected human embryonal lung fibroblasts (HELF) was analyzed. Viral replication depended on the functional activity of sphingosine kinases (SK). During SK inhibition, addition of extracellular S1P restored HCMV replication. Moreover, neutralization of extracellular S1P by anti-S1P antibodies decreased HCMV replication as well. While the application of FTY720 as an functional antagonist of S1P receptor (S1PR)1,3−5 signaling did not reduce HCMV replication significantly, JTE-013, an inhibitor of S1PR2, decreased viral replication. Furthermore, inhibition of Rac-1 activity reduced HCMV replication, whereas inhibition of the Rac-1 effector protein Rac-1-activated kinase 1 (PAK1) had no influence. In general, targeting S1P-induced pathways, which are essential for a successful HCMV replication, may represent a valuable strategy to develop new antiviral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fishman JA (2017) Infection in organ transplantation. Am J Transpl 17(4):856–879

    Article  CAS  Google Scholar 

  2. Selvey LA, Lim WH, Boan P, Swaminathan R, Slimings C, Harrison AE, Chakera A (2017) Cytomegalovirus viraemia and mortality in renal transplant recipients in the era of antiviral prophylaxis. Lessons from the western Australian experience. BMC Infect Dis 17(1):501

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Maar EF, Verschuuren EA, Harmsen MC, The TH, van Son WJ (2003) Pulmonary involvement during cytomegalovirus infection in immunosuppressed patients. Transpl Infect Dis 5(3):112–120

    Article  PubMed  Google Scholar 

  4. Travi G, Pergam SA (2014) Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 29(4):200–212

    Article  PubMed  Google Scholar 

  5. Ison MG, Fishman JA (2005) Cytomegalovirus pneumonia in transplant recipients. Clin Chest Med 26(4):691–705 viii.

    Article  PubMed  Google Scholar 

  6. Murph JR, Souza IE, Dawson JD, Benson P, Petheram SJ, Pfab D, Gregg A, O’Neill ME, Zimmerman B, Bale JF Jr (1998) Epidemiology of congenital cytomegalovirus infection: maternal risk factors and molecular analysis of cytomegalovirus strains. Am J Epidemiol 147(10):940–947

    Article  PubMed  CAS  Google Scholar 

  7. Cannon MJ (2009) Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol 46(4):S6–10

    PubMed  Google Scholar 

  8. Bissinger AL, Sinzger C, Kaiserling E, Jahn G (2002) Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67(2):200–206

    Article  PubMed  CAS  Google Scholar 

  9. Gabrielli L, Bonasoni MP, Lazzarotto T, Lega S, Santini D, Foschini MP, Guerra B, Baccolini F, Piccirilli G, Chiereghin A, Petrisli E, Gardini G, Lanari M, Landini MP (2009) Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol 46(Suppl 4):S16–21

    Article  PubMed  Google Scholar 

  10. Dulal K, Cheng T, Yang L, Wang W, Huang Y, Silver B, Selariu A, Xie C, Wang D, Espeseth A, Lin Y, Wen L, Xia N, Fu TM, Zhu H (2016) Functional analysis of human cytomegalovirus UL/b’ region using SCID-hu mouse model. J Med Virol 88(8):1417–1426

    Article  PubMed  CAS  Google Scholar 

  11. Maidji E, Kosikova G, Joshi P, Stoddart CA (2012) Impaired surfactant production by alveolar epithelial cells in a SCID-hu lung mouse model of congenital human cytomegalovirus infection. J Virol 86(23):12795–12805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67(9):5360–5366

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55(2):264–273

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74(16):7496–7507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76(Pt 4):741–750

    Article  PubMed  CAS  Google Scholar 

  16. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83

    PubMed  CAS  Google Scholar 

  17. Timpone JG, Yimen M, Cox S, Teran R, Ajluni S, Goldstein D, Fishbein T, Kumar PN, Matsumoto C (2016) Resistant cytomegalovirus in intestinal and multivisceral transplant recipients. Transpl Infect Dis 18(2):202–209

    Article  PubMed  CAS  Google Scholar 

  18. El Chaer F, Shah DP, Chemaly RF (2016) How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 128(23):2624–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hanson KE, Swaminathan S (2015) Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 10(10):1545–1548

    Article  PubMed  CAS  Google Scholar 

  20. Kagele D, Rossetto CC, Tarrant MT, Pari GS (2012) Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. Virology 424(2):106–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2(12):e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McArdle J, Moorman NJ, Munger J (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8(1):e1002502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schneider-Schaulies J, Schneider-Schaulies S (2015) Sphingolipids in viral infection. Biol Chem 396(6–7):585–595

    PubMed  CAS  Google Scholar 

  25. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510(7503):58–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Thuy AV, Reimann CM, Hemdan NY, Graler MH (2014) Sphingosine 1-phosphate in blood: function, metabolism, and fate. Cell Physiol Biochem 34(1):158–171

    Article  PubMed  CAS  Google Scholar 

  27. Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585(2–3):193–201

    Article  PubMed  CAS  Google Scholar 

  28. Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125(4):1379–1387

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE (2016) Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol 6:218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Machesky NJ, Zhang G, Raghavan B, Zimmerman P, Kelly SL, Merrill AH Jr, Waldman WJ, Van Brocklyn JR, Trgovcich J (2008) Human cytomegalovirus regulates bioactive sphingolipids. J Biol Chem 283(38):26148–26160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sobel K, Menyhart K, Killer N, Renault B, Bauer Y, Studer R, Steiner B, Bolli MH, Nayler O, Gatfield J (2013) Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J Biol Chem 288(21):14839–14851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102(50):18153–18158

    Article  PubMed  CAS  Google Scholar 

  33. Wang D, Shenk T (2005) Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 79(16):10330–10338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wilkinson GW, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang EC, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ (2015) Human cytomegalovirus: taking the strain. Med Microbiol Immunol 204(3):273–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7(5):e1001344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Renzette N, Kowalik TF, Jensen JD (2016) On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity. Mol Ecol 25(1):403–413

    Article  PubMed  Google Scholar 

  37. Kawabori M, Kacimi R, Karliner JS, Yenari MA (2013) Sphingolipids in cardiovascular and cerebrovascular systems: pathological implications and potential therapeutic targets. World J Cardiol 5(4):75–86

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ford Siltz LA, Viktorova EG, Zhang B, Kouiavskaia D, Dragunsky E, Chumakov K, Isaacs L, Belov GA (2014) New small-molecule inhibitors effectively blocking picornavirus replication. J Virol 88(19):11091–11107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lou Z, Sun Y, Rao Z (2014) Current progress in antiviral strategies. Trends Pharmacol Sci 35(2):86–102

    Article  PubMed  CAS  Google Scholar 

  40. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276(1):40–47

    Article  PubMed  CAS  Google Scholar 

  41. Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, Viollet B, Carling D, Heller R (2010) Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem 285(14):10638–10652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84(3):570–573

    Article  PubMed  CAS  Google Scholar 

  43. Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GW (2010) Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120(9):3191–3208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89(Pt 2):359–368

    Article  PubMed  CAS  Google Scholar 

  45. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  PubMed  CAS  Google Scholar 

  46. Ammer E, Nietzsche S, Rien C, Kuhnl A, Mader T, Heller R, Sauerbrei A, Henke A (2015) The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 204(6):635–645

    Article  PubMed  CAS  Google Scholar 

  47. Carrizzo A, Forte M, Lembo M, Formisano L, Puca AA, Vecchione C (2014) Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr Drug Targets 15(13):1231–1246

    Article  PubMed  CAS  Google Scholar 

  48. Richerioux N, Blondeau C, Wiedemann A, Remy S, Vautherot JF, Denesvre C (2012) Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s Disease Virus. PLoS One 7(8):e44072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101(20):7618–7623

    Article  PubMed  CAS  Google Scholar 

  50. Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31

    Article  PubMed  CAS  Google Scholar 

  51. Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15(4):322–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sinzger C, Jahn G (1996) Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39(5–6):302–319

    Article  PubMed  CAS  Google Scholar 

  53. Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L (2000) Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 251(1):19–26

    Article  PubMed  CAS  Google Scholar 

  54. Huang RT (1976) Sphingolipids of influenza viruses. Biochim Biophys Acta 424(1):90–97

    Article  PubMed  CAS  Google Scholar 

  55. Miccheli A, Ricciolini R, Lagana A, Piccolella E, Conti F (1991) Modulation of the free sphingosine levels in Epstein Barr virus transformed human B lymphocytes by phorbol dibutyrate. Biochim Biophys Acta 1095(1):90–92

    Article  PubMed  CAS  Google Scholar 

  56. Yang TC, Lai CC, Shiu SL, Chuang PH, Tzou BC, Lin YY, Tsai FJ, Lin CW (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12(8–9):643–651

    Article  PubMed  CAS  Google Scholar 

  57. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C (2014) Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13(1):154–164

    Article  PubMed  CAS  Google Scholar 

  58. Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407

    Article  PubMed  CAS  Google Scholar 

  60. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279(5356):1552–1555

    Article  PubMed  CAS  Google Scholar 

  61. Aarthi JJ, Darendeliler MA, Pushparaj PN (2011) Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 90(7):841–854

    Article  PubMed  CAS  Google Scholar 

  62. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11(6):403–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D (2016) Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharmacol 7:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tong S, Tian J, Wang H, Huang Z, Yu M, Sun L, Liu R, Liao M, Ning Z (2013) H9N2 avian influenza infection altered expression pattern of sphiogosine-1-phosphate receptor 1 in BALB/c mice. Virol J 10:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang X, Yu Y, Li M, Yu Y, Liu G, Xie Y, Liu Y, Yang X, Zou Y, Ge J, Chen R (2017) Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. Exp Mol Pathol 103(2):210–217

    Article  PubMed  CAS  Google Scholar 

  66. Nagahashi M, Takabe K, Terracina KP, Soma D, Hirose Y, Kobayashi T, Matsuda Y, Wakai T (2014) Sphingosine-1-phosphate transporters as targets for cancer therapy. Biomed Res Int 2014:651727

  67. Van den Broeke C, Jacob T, Favoreel HW (2014) Rho’ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 5:e28318

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, Zeng F, Ren Z, Qian C, Liu G, Kitazato K, Wang Y (2012) Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 86(16):8440–8451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Roberts KL, Baines JD (2011) Actin in herpesvirus infection. Viruses 3(4):336–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Morsdorf D (2006) Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87(Pt 12):3483–3494

    Article  PubMed  CAS  Google Scholar 

  71. Petermann P, Haase I, Knebel-Morsdorf D (2009) Impact of Rac1 and Cdc42 signaling during early herpes simplex virus type 1 infection of keratinocytes. J Virol 83(19):9759–9772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Murata T, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y (2000) Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5(12):1017–1027

    Article  PubMed  CAS  Google Scholar 

  73. Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20(3):160–169

    Article  PubMed  CAS  Google Scholar 

  74. Jacob T, Van den Broeke C, van Troys M, Waterschoot D, Ampe C, Favoreel HW (2013) Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton. J Virol 87(7):4121–4126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zheng K, Xiang Y, Wang X, Wang Q, Zhong M, Wang S, Wang X, Fan J, Kitazato K, Wang Y (2014) Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. MBio 5(1):e00958–00913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9(11):846–859

    Article  PubMed  CAS  Google Scholar 

  77. Carr JM, Mahalingam S, Bonder CS, Pitson SM (2013) Sphingosine kinase 1 in viral infections. Rev Med Virol 23(2):73–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Roger Sabbadini for providing the S1P-specific antibody Lpath Lt1002 as well as the non-specific control antibody Lpath Lt1013. We also thank Christian Sinzger (Institute of Virology, University of Ulm, Ulm, Germany) and Richard J. Stanton (Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK) for providing HCMV strains TB40/E and Merlin, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Henke.

Ethics declarations

Conflict of interest

The authors declare no conflicting financial or other interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilch, A., Rien, C., Weigel, C. et al. Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts. Med Microbiol Immunol 207, 227–242 (2018). https://doi.org/10.1007/s00430-018-0543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0543-4

Keywords

Navigation