Skip to main content

Advertisement

Log in

Differential regulation of angiopoietin 1 and angiopoietin 2 during dengue virus infection of human umbilical vein endothelial cells: implications for endothelial hyperpermeability

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Infection with dengue virus (DV) can result in dengue hemorrhagic fever and dengue shock syndrome, where patients suffer from bleeding and plasma leakage involving endothelial cells. Angiopoietins (Ang) 1 and 2 are important angiogenic factors that affect endothelial barrier integrity. In this study, DV was observed to induce endothelial leakage at multiplicity of infection of 10 in primary human umbilical vein endothelial cells (HUVEC) with interendothelial gap formation. Immunostaining of vascular endothelial cadherin (VE-cadherin) and zona occludin 1 (ZO-1) showed the absence of these endothelial junctional proteins at the cell–cell contact zones between adjacent cells. In addition, Ang1 that is required for protecting against endothelial hyperpermeability was found to be down-regulated during DV infection. Treatment with increasing concentrations of recombinant Ang1 was shown to prevent DV-induced endothelial hyperpermeability in a dose-dependent manner by preventing the down-regulation of VE-cadherin and ZO-1 at cell membrane. In contrast, the expression of Ang2, the natural antagonist of Ang1, was observed to be up-regulated during DV infection. Recombinant Ang2 added to HUVEC at non-toxic concentrations showed decreased in transendothelial electrical resistance reading and the down-regulation of VE-cadherin and ZO-1. These findings suggest that DV reduces the expression of Ang1 and enhances the expression of Ang2 in endothelial cells and that this imbalance of Ang 1 and Ang 2 may play a contributing role to the increased permeability of human primary endothelial cells during DV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652. doi:10.1016/S0140-6736(07)61687-0

    Article  PubMed  Google Scholar 

  2. Huang YH, Lei HY, Liu HS, Lin YS, Liu CC, Yeh TM (2000) Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg 63(1–2):71–75

    PubMed  CAS  Google Scholar 

  3. Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134–145. doi:10.1196/annals.1420.016

    Article  PubMed  CAS  Google Scholar 

  4. Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH, Liu CC (2001) Immunopathogenesis of dengue virus infection. J Biomed Sci 8(5):377–388

    Article  PubMed  CAS  Google Scholar 

  5. Butthep P, Chunhakan S, Tangnararatchakit K, Yoksan S, Pattanapanyasat K, Chuansumrit A (2006) Elevated soluble thrombomodulin in the febrile stage related to patients at risk for dengue shock syndrome. Pediatr Infect Dis J 25(10):894–897. doi:10.1097/01.inf.0000237918.85330.b9

    Article  PubMed  Google Scholar 

  6. Cardier JE, Rivas B, Romano E, Rothman AL, Perez-Perez C, Ochoa M, Caceres AM, Cardier M, Guevara N, Giovannetti R (2006) Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 13(5):335–340. doi:10.1080/10623320600972135

    Article  PubMed  CAS  Google Scholar 

  7. Jacobs M, Levin M (2002) An improved endothelial barrier model to investigate dengue haemorrhagic fever. J Virol Methods 104(2):173–185

    Article  PubMed  CAS  Google Scholar 

  8. Liu P, Woda M, Ennis FA, Libraty DH (2009) Dengue virus infection differentially regulates endothelial barrier function over time through type I interferon effects. J Infect Dis 200(2):191–201. doi:10.1086/599795

    Article  PubMed  CAS  Google Scholar 

  9. Dalrymple NA, Mackow ER (2012) Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol 86(12):6408–6415. doi:10.1128/JVI.00213-12

    Article  PubMed  CAS  Google Scholar 

  10. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7):1161–1169

    Article  PubMed  CAS  Google Scholar 

  11. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  PubMed  CAS  Google Scholar 

  12. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448(2–3):249–253

    Article  PubMed  CAS  Google Scholar 

  13. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87(7):603–607

    Article  PubMed  CAS  Google Scholar 

  14. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell-matrix contacts. Nat Cell Biol 10(5):527–537. doi:10.1038/ncb1715

    Article  PubMed  CAS  Google Scholar 

  15. Kim I, Moon SO, Park SK, Chae SW, Koh GY (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89(6):477–479

    Article  PubMed  CAS  Google Scholar 

  16. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22):15732–15739

    Article  PubMed  CAS  Google Scholar 

  17. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314(2):738–744. doi:10.1124/jpet.105.086553

    Article  PubMed  CAS  Google Scholar 

  18. Mofarrahi M, Nouh T, Qureshi S, Guillot L, Mayaki D, Hussain SN (2008) Regulation of angiopoietin expression by bacterial lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 294(5):L955–L963. doi:10.1152/ajplung.00449.2007

    Article  PubMed  CAS  Google Scholar 

  19. Hwang JY, Park JW, Hong SY, Park HS (2009) Reduced expression of angiopoietin-1 in Hantaan virus-infected human umbilical vein endothelial cell increases their permeability. Acta Virol 53(1):7–13

    Article  PubMed  CAS  Google Scholar 

  20. Burgess A, Vigneron S, Brioudes E, Labbe J-C, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA 107(28):12564–12569. doi:10.1073/pnas.0914191107

    Article  PubMed  CAS  Google Scholar 

  21. Dewi BE, Takasaki T, Kurane I (2004) In vitro assessment of human endothelial cell permeability: effects of inflammatory cytokines and dengue virus infection. J Virol Methods 121(2):171–180. doi:10.1016/j.jviromet.2004.06.013

    Article  PubMed  CAS  Google Scholar 

  22. Ferrero E, Zocchi MR, Magni E, Panzeri MC, Curnis F, Rugarli C, Ferrero ME, Corti A (2001) Roles of tumor necrosis factor p55 and p75 receptors in TNF-alpha-induced vascular permeability. Am J Physiol Cell Physiol 281(4):C1173–C1179

    PubMed  CAS  Google Scholar 

  23. Bhattacharya R, Sinha S, Yang SP, Patra C, Dutta S, Wang E, Mukhopadhyay D (2008) The neurotransmitter dopamine modulates vascular permeability in the endothelium. J Mol Signal 3:14. doi:10.1186/1750-2187-3-14

    Article  PubMed  Google Scholar 

  24. Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110(Pt 5):583–588

    PubMed  CAS  Google Scholar 

  25. Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai KM, Lin HC, Ioffe E, Yancopoulos GD, Rudge JS (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18(9):1060–1071. doi:10.1101/gad.1189704

    Article  PubMed  CAS  Google Scholar 

  26. Peters S, Cree IA, Alexander R, Turowski P, Ockrim Z, Patel J, Boyd SR, Joussen AM, Ziemssen F, Hykin PG, Moss SE (2007) Angiopoietin modulation of vascular endothelial growth factor: effects on retinal endothelial cell permeability. Cytokine 40(2):144–150. doi:10.1016/j.cyto.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  27. Giamarellos-Bourboulis EJ, Kanellakopoulou K, Pelekanou A, Tsaganos T, Kotzampassi K (2008) Kinetics of angiopoietin-2 in serum of multi-trauma patients: correlation with patient severity. Cytokine 44(2):310–313. doi:10.1016/j.cyto.2008.09.003

    Article  PubMed  CAS  Google Scholar 

  28. Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004) IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 85(Pt 7):1801–1813. doi:10.1099/vir.0.19652-0

    Article  PubMed  CAS  Google Scholar 

  29. Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, Lin YS, Yeh TM, Chen SH, Liu HS (2006) MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 87(Pt 12):3623–3630. doi:10.1099/vir.0.82093-0

    Article  PubMed  CAS  Google Scholar 

  30. Chuang YC, Lei HY, Liu HS, Lin YS, Fu TF, Yeh TM (2011) Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine 54(2):222–231. doi:10.1016/j.cyto.2011.01.013

    Article  PubMed  CAS  Google Scholar 

  31. Ong SP, Lee LM, Leong YF, Ng ML, Chu JJ (2012) Dengue virus infection mediates HMGB1 release from monocytes involving PCAF acetylase complex and induces vascular leakage in endothelial cells. PLoS ONE 7(7):e41932. doi:10.1371/journal.pone.0041932

    Article  PubMed  CAS  Google Scholar 

  32. Andrews BS, Theofilopoulos AN, Peters CJ, Loskutoff DJ, Brandt WE, Dixon FJ (1978) Replication of dengue and junin viruses in cultured rabbit and human endothelial cells. Infect Immun 20(3):776–781

    PubMed  CAS  Google Scholar 

  33. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181(1):2–9. doi:10.1086/315215

    Article  PubMed  CAS  Google Scholar 

  34. Arevalo MT, Simpson-Haidaris PJ, Kou Z, Schlesinger JJ, Jin X (2009) Primary human endothelial cells support direct but not antibody-dependent enhancement of dengue viral infection. J Med Virol 81(3):519–528. doi:10.1002/jmv.21408

    Article  PubMed  CAS  Google Scholar 

  35. Wu HM, Yuan Y, Zawieja DC, Tinsley J, Granger HJ (1999) Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am J Physiol 276(2 Pt 2):H535–H542

    PubMed  CAS  Google Scholar 

  36. Minshall RD, Vandenbroucke EE, Holinstat M, Place AT, Tiruppathi C, Vogel SM, van Nieuw Amerongen GP, Mehta D, Malik AB (2010) Role of protein kinase Czeta in thrombin-induced RhoA activation and inter-endothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvasc Res 80(2):240–249. doi:10.1016/j.mvr.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  37. Goldberg PL, MacNaughton DE, Clements RT, Minnear FL, Vincent PA (2002) p38 MAPK activation by TGF-beta1 increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell Mol Physiol 282(1):L146–L154

    PubMed  CAS  Google Scholar 

  38. He P, Zeng M, Curry FE (1998) cGMP modulates basal and activated microvessel permeability independently of [Ca2 +]i. Am J Physiol 274(6 Pt 2):H1865–H1874

    PubMed  CAS  Google Scholar 

  39. Garcia JG, Davis HW, Patterson CE (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163(3):510–522. doi:10.1002/jcp.1041630311

    Article  PubMed  CAS  Google Scholar 

  40. Alexander JS, Jackson SA, Chaney E, Kevil CG, Haselton FR (1998) The role of cadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actin-cadherin interactions. Inflammation 22(4):419–433

    Article  PubMed  CAS  Google Scholar 

  41. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756. doi:10.1016/j.bbamem.2007.08.018

    Article  PubMed  CAS  Google Scholar 

  42. Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2009) Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res 8(5):2551–2562. doi:10.1021/pr900060g

    Article  PubMed  CAS  Google Scholar 

  43. Ochoa CD, Stevens T (2012) Studies on the cell biology of interendothelial cell gaps. Am J Physiol Lung Cell Mol Physiol 302(3):L275–L286. doi:10.1152/ajplung.00215.2011

    Article  PubMed  CAS  Google Scholar 

  44. Kayakabe K, Kuroiwa T, Sakurai N, Ikeuchi H, Kadiombo AT, Sakairi T, Matsumoto T, Maeshima A, Hiromura K, Nojima Y (2012) Interleukin-6 promotes destabilized angiogenesis by modulating angiopoietin expression in rheumatoid arthritis. Rheumatology (Oxford) 51(9):1571–1579. doi:10.1093/rheumatology/kes093

    Article  CAS  Google Scholar 

  45. Scott BB, Zaratin PF, Gilmartin AG, Hansbury MJ, Colombo A, Belpasso C, Winkler JD, Jackson JR (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328(2):409–414. doi:10.1016/j.bbrc.2004.12.180

    Article  PubMed  CAS  Google Scholar 

  46. Azizan A, Sweat J, Espino C, Gemmer J, Stark L, Kazanis D (2006) Differential proinflammatory and angiogenesis-specific cytokine production in human pulmonary endothelial cells, HPMEC-ST1.6R infected with dengue-2 and dengue-3 virus. J Virol Methods 138(1–2):211–217. doi:10.1016/j.jviromet.2006.08.010

    Article  PubMed  CAS  Google Scholar 

  47. Chaturvedi UC, Nagar R (2009) Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS Immunol Med Microbiol 56(1):9–24. doi:10.1111/j.1574-695X.2009.00544.x

    Article  PubMed  CAS  Google Scholar 

  48. Scherbik SV, Brinton MA (2010) Virus-induced Ca2 + influx extends survival of west Nile virus-infected cells. J Virol 84(17):8721–8731. doi:10.1128/JVI.00144-10

    Article  PubMed  CAS  Google Scholar 

  49. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493. doi:10.1146/annurev-physiol-021909-135833

    Article  PubMed  CAS  Google Scholar 

  50. Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14(1):25–36. doi:10.1016/j.devcel.2007.10.019

    Article  PubMed  CAS  Google Scholar 

  51. David S, Ghosh CC, Mukherjee A, Parikh SM (2011) Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler Thromb Vasc Biol 31(11):2643–2652. doi:10.1161/ATVBAHA.111.233189

    Article  PubMed  CAS  Google Scholar 

  52. Azizan A, Fitzpatrick K, Signorovitz A, Tanner R, Hernandez H, Stark L, Sweat M (2009) Profile of time-dependent VEGF upregulation in human pulmonary endothelial cells, HPMEC-ST1.6R infected with DENV-1, -2, -3, and -4 viruses. Virol J 6:49. doi:10.1186/1743-422X-6-49

    Article  PubMed  Google Scholar 

  53. Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke RV, Fournier MV, Ennis FA, Rothman AL (2002) Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol 76(11):5588–5597

    Article  PubMed  CAS  Google Scholar 

  54. Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, Brizuela N, de Bosch N, Lapointe D, Ennis FA, Rothman AL, Bosch I (2003) Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J Virol 77(21):11822–11832

    Article  PubMed  CAS  Google Scholar 

  55. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3(3):e46. doi:10.1371/journal.pmed.0030046

    Article  PubMed  Google Scholar 

  56. Tanaka S, Wands JR, Arii S (2006) Induction of angiopoietin-2 gene expression by COX-2: a novel role for COX-2 inhibitors during hepatocarcinogenesis. J Hepatol 44(1):233–235. doi:10.1016/j.jhep.2005.09.012

    Article  PubMed  CAS  Google Scholar 

  57. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673. doi:10.1161/01.RES.0000093984.48643.D7

    Article  PubMed  CAS  Google Scholar 

  58. Huerta-Zepeda A, Cabello-Gutierrez C, Cime-Castillo J, Monroy-Martinez V, Manjarrez-Zavala ME, Gutierrez-Rodriguez M, Izaguirre R, Ruiz-Ordaz BH (2008) Crosstalk between coagulation and inflammation during Dengue virus infection. Thromb Haemost 99(5):936–943. doi:10.1160/TH07-08-0438

    PubMed  CAS  Google Scholar 

  59. Wu WL, Ho LJ, Chang DM, Chen CH, Lai JH (2009) Triggering of DC migration by dengue virus stimulation of COX-2-dependent signaling cascades in vitro highlights the significance of these cascades beyond inflammation. Eur J Immunol 39(12):3413–3422. doi:10.1002/eji.200939306

    Article  PubMed  CAS  Google Scholar 

  60. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 86(1):24–29

    Article  PubMed  CAS  Google Scholar 

  61. Korff T, Ernst E, Nobiling R, Feldner A, Reiss Y, Plate KH, Fiedler U, Augustin HG, Hecker M (2012) Angiopoietin-1 mediates inhibition of hypertension-induced release of angiopoietin-2 from endothelial cells. Cardiovasc Res 94(3):510–518. doi:10.1093/cvr/cvs124

    Article  PubMed  CAS  Google Scholar 

  62. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12(2):235–239. doi:10.1038/nm1351

    Article  PubMed  CAS  Google Scholar 

  63. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29(8):2011–2022. doi:10.1128/MCB.01472-08

    Article  PubMed  CAS  Google Scholar 

  64. Niedzwieckii S, Stepien T, Kopec K, Kuzdak K, Komorowski J, Krupinskii R, Stepien H (2006) Angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2) and Tie-2 (a receptor tyrosine kinase) concentrations in peripheral blood of patients with thyroid cancers. Cytokine 36(5–6):291–295. doi:10.1016/j.cyto.2007.02.008

    Article  Google Scholar 

  65. Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, Wieland T, Klein C, Thomas M, Uemura A, Goerdt S, Augustin HG (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122(6):1991–2005. doi:10.1172/JCI58832

    Article  PubMed  CAS  Google Scholar 

  66. Srikiatkhachorn A, Green S (2010) Markers of dengue disease severity. Curr Top Microbiol Immunol 338:67–82. doi:10.1007/978-3-642-02215-9_6

    Article  PubMed  CAS  Google Scholar 

  67. Kanazawa H, Nomura S, Asai K (2007) Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients. Chest 131(4):1035–1041. doi:10.1378/chest.06-2758

    Article  PubMed  CAS  Google Scholar 

  68. Kumpers P, David S, Haubitz M, Hellpap J, Horn R, Brocker V, Schiffer M, Haller H, Witte T (2009) The Tie2 receptor antagonist angiopoietin 2 facilitates vascular inflammation in systemic lupus erythematosus. Ann Rheum Dis 68(10):1638–1643. doi:10.1136/ard.2008.094664

    Article  PubMed  CAS  Google Scholar 

  69. Giuliano J, Lahni P, Harmon K, Wong H, Doughty L, Carcillo J, Zingarelli B, Sukhatme V, Parikh S, Wheeler D (2007) Admission angiopoietin levels in children with septic shock. Shock (Augusta, Ga) 28(2677f927-7476-9a3d-3251-1fe7ac661419):650–1304

  70. Lukasz A, Hellpap J, Horn R, Kielstein J, David S, Haller H, Kumpers P (2008) Circulating angiopoietin-1 and angiopoietin-2 in critically ill patients: development and clinical application of two new immunoassays. Critical care (London, England) 12 (f83da33e-e1bd-1985-d6e1-1fe12c2b80b3). doi:10.1186/cc6966

  71. Michels M, van der Ven AJ, Djamiatun K, Fijnheer R, de Groot PG, Griffioen AW, Sebastian S, Faradz SM, de Mast Q (2012) Imbalance of Angiopoietin-1 and Angiopoietin-2 in Severe Dengue and Relationship with Thrombocytopenia, Endothelial Activation, and Vascular Stability. Am J Trop Med Hyg. doi:10.4269/ajtmh.2012.12-0020

    PubMed  Google Scholar 

  72. Jain V, Lucchi NW, Wilson NO, Blackstock AJ, Nagpal AC, Joel PK, Singh MP, Udhayakumar V, Stiles JK, Singh N (2011) Plasma levels of angiopoietin-1 and -2 predict cerebral malaria outcome in Central India. Malar J 10:383. doi:10.1186/1475-2875-10-383

    Article  PubMed  CAS  Google Scholar 

  73. Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, Turner G (2001) Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 64(3–4):207–213

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Start-up grants (R182-000-000-165-133 and R182-000-165-733) and Defence Innovative Research Programme grants (R182-000-210-232, R182-000-210-234, and PA9011104293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Jang Hann Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, S.P., Ng, M.L. & Chu, J.J.H. Differential regulation of angiopoietin 1 and angiopoietin 2 during dengue virus infection of human umbilical vein endothelial cells: implications for endothelial hyperpermeability. Med Microbiol Immunol 202, 437–452 (2013). https://doi.org/10.1007/s00430-013-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0310-5

Keywords

Navigation