Skip to main content
Log in

Principles of polyoma- and papillomavirus uncoating

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Virus particles are vehicles for transmission of the viral genetic information between infected and uninfected cells and organisms. They have evolved to self-assemble, to serve as a protective shell for the viral genome during transfer, and to disassemble when entering a target cell. Disassembly during entry is a complex, multi-step process typically termed uncoating. Uncoating is triggered by multiple host-cell interactions. During cell entry, these interactions occur sequentially in different cellular compartments that the viruses pass through on their way to the site of replication. Here, we highlight the general principles of uncoating for two structurally related virus families, the polyoma- and papillomaviruses. Recent research indicates the use of different compartments and cellular interactions for uncoating despite their structural similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greber UF, Singh I, Helenius A (1994) Mechanisms of virus uncoating. Trends Microbiol 2(2):52–56

    Article  PubMed  CAS  Google Scholar 

  2. Howley PM, Lowy DR (2007) Papillomaviruses. In: Fields BN, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, Knipe DM (eds) Fields Virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA, USA, p 2300–2354

  3. Imperiale MJ, Major EO (2007) Polyomavirus. In: Fields BN, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, Knipe DM (eds) Fields Virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA, USA, p 2268–2282

  4. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866):1096–1100. doi:10.1126/science.1152586

    Article  PubMed  CAS  Google Scholar 

  5. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324(1):17–27. doi:10.1016/j.virol.2004.03.033

    Article  PubMed  CAS  Google Scholar 

  6. Sapp M, Day PM (2009) Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384(2):400–409. doi:10.1016/j.virol.2008.12.022

    Article  PubMed  CAS  Google Scholar 

  7. Tsai B, Qian M (2010) Cellular entry of polyomaviruses. Curr Top Microbiol Immunol 343:177–194. doi:10.1007/82_2010_38

    Article  PubMed  CAS  Google Scholar 

  8. Neu U, Stehle T, Atwood WJ (2009) The Polyomaviridae: contributions of virus structure to our understanding of virus receptors and infectious entry. Virology 384(2):389–399. doi:10.1016/j.virol.2008.12.021

    Article  PubMed  CAS  Google Scholar 

  9. Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68(2):362–372

    Article  PubMed  CAS  Google Scholar 

  10. Buck CB, Pastrana DV, Lowy DR, Schiller JT (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78(2):751–757

    Article  PubMed  CAS  Google Scholar 

  11. Van Regenmortel M, Fauquet C, Bishop D, Carstens E, Estes M, Lemon S, Maniloff J, Mayo M, McGeoch D, Pringle C, Wickner R (2000) Virus taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses Academic Press, San Diego, New York

    Google Scholar 

  12. Klug A, Finch JT (1965) Structure of Viruses of the Papilloma-Polyoma Type. I. Human Wart Virus. J Mol Biol 11:403–423

    Article  PubMed  CAS  Google Scholar 

  13. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354(6351):278–284

    Article  PubMed  CAS  Google Scholar 

  14. Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60(6):1445–1456

    Article  PubMed  CAS  Google Scholar 

  15. Stehle T, Gamblin SJ, Yan Y, Harrison SC (1996) The structure of simian virus 40 refined at 3.1 A resolution. Structure 4(2):165–182

    Article  PubMed  CAS  Google Scholar 

  16. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5(3):557–567

    Article  PubMed  CAS  Google Scholar 

  17. Bishop B, Dasgupta J, Klein M, Garcea RL, Christensen ND, Zhao R, Chen XS (2007) Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem 282(43):31803–31811. doi:10.1074/jbc.M706380200

    Article  PubMed  CAS  Google Scholar 

  18. Murata H, Teferedegne B, Sheng L, Lewis AM Jr, Peden K (2008) Identification of a neutralization epitope in the VP1 capsid protein of SV40. Virology 381(1):116–122. doi:10.1016/j.virol.2008.07.032

    Article  PubMed  CAS  Google Scholar 

  19. Modis Y, Trus BL, Harrison SC (2002) Atomic model of the papillomavirus capsid. EMBO J 21(18):4754–4762

    Article  PubMed  CAS  Google Scholar 

  20. Brady JN, Kendall JD, Consigli RA (1979) In vitro reassembly of infectious polyoma virions. J Virol 32(2):640–647

    PubMed  CAS  Google Scholar 

  21. Brady JN, Winston VD, Consigli RA (1977) Dissociation of polyoma virus by the chelation of calcium ions found associated with purified virions. J Virol 23(3):717–724

    PubMed  CAS  Google Scholar 

  22. Ishizu KI, Watanabe H, Han SI, Kanesashi SN, Hoque M, Yajima H, Kataoka K, Handa H (2001) Roles of disulfide linkage and calcium ion-mediated interactions in assembly and disassembly of virus-like particles composed of simian virus 40 VP1 capsid protein. J Virol 75(1):61–72. doi:10.1128/JVI.75.1.61-72.2001

    Article  PubMed  CAS  Google Scholar 

  23. Hanslip SJ, Zaccai NR, Middelberg AP, Falconer RJ (2006) Assembly of human papillomavirus type-16 virus-like particles: multifactorial study of assembly and competing aggregation. Biotechnol Prog 22(2):554–560. doi:10.1021/bp0502781

    Article  PubMed  CAS  Google Scholar 

  24. Paintsil J, Muller M, Picken M, Gissmann L, Zhou J (1998) Calcium is required in reassembly of bovine papillomavirus in vitro. J Gen Virol 79(Pt 5):1133–1141

    PubMed  CAS  Google Scholar 

  25. McCarthy MP, White WI, Palmer-Hill F, Koenig S, Suzich JA (1998) Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro. J Virol 72(1):32–41

    PubMed  CAS  Google Scholar 

  26. Sapp M, Fligge C, Petzak I, Harris JR, Streeck RE (1998) Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J Virol 72(7):6186–6189

    PubMed  CAS  Google Scholar 

  27. Sapp M, Volpers C, Muller M, Streeck RE (1995) Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J Gen Virol 76(Pt 9):2407–2412

    Article  PubMed  CAS  Google Scholar 

  28. Li M, Beard P, Estes PA, Lyon MK, Garcea RL (1998) Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J Virol 72(3):2160–2167

    PubMed  CAS  Google Scholar 

  29. Ishii Y, Tanaka K, Kanda T (2003) Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology 308(1):128–136

    Article  PubMed  CAS  Google Scholar 

  30. Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C (2011) Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS ONE 6(7):e22427. doi:10.1371/journal.pone.0022427

    Article  PubMed  CAS  Google Scholar 

  31. Stehle T, Harrison SC (1996) Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4(2):183–194

    Article  PubMed  CAS  Google Scholar 

  32. Krauzewicz N, Streuli CH, Stuart-Smith N, Jones MD, Wallace S, Griffin BE (1990) Myristylated polyomavirus VP2: role in the life cycle of the virus. J Virol 64(9):4414–4420

    PubMed  CAS  Google Scholar 

  33. Sahli R, Freund R, Dubensky T, Garcea R, Bronson R, Benjamin T (1993) Defect in entry and altered pathogenicity of a polyoma virus mutant blocked in VP2 myristylation. Virology 192(1):142–153. doi:10.1006/viro.1993.1016

    Article  PubMed  CAS  Google Scholar 

  34. Gasparovic ML, Gee GV, Atwood WJ (2006) JC virus minor capsid proteins Vp2 and Vp3 are essential for virus propagation. J Virol 80(21):10858–10861. doi:10.1128/JVI.01298-06

    Article  PubMed  CAS  Google Scholar 

  35. Baker TS, Drak J, Bina M (1989) The capsid of small papova viruses contains 72 pentameric capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40. Biophys J 55(2):243–253. doi:10.1016/S0006-3495(89)82799-7

    Article  PubMed  CAS  Google Scholar 

  36. Griffith JP, Griffith DL, Rayment I, Murakami WT, Caspar DL (1992) Inside polyomavirus at 25-A resolution. Nature 355(6361):652–654. doi:10.1038/355652a0

    Article  PubMed  CAS  Google Scholar 

  37. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL (2008) Arrangement of L2 within the Papillomavirus capsid. J Virol 82(11):5190–5197

    Article  PubMed  CAS  Google Scholar 

  38. Chen XS, Stehle T, Harrison SC (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17(12):3233–3240. doi:10.1093/emboj/17.12.3233

    Article  PubMed  CAS  Google Scholar 

  39. Finnen RL, Erickson KD, Chen XS, Garcea RL (2003) Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77(8):4818–4826

    Article  PubMed  CAS  Google Scholar 

  40. Okun MM, Day PM, Greenstone HL, Booy FP, Lowy DR, Schiller JT, Roden RB (2001) L1 interaction domains of papillomavirus l2 necessary for viral genome encapsidation. J Virol 75(9):4332–4342. doi:10.1128/JVI.75.9.4332-4342.2001

    Article  PubMed  CAS  Google Scholar 

  41. Barouch DH, Harrison SC (1994) Interactions among the major and minor coat proteins of polyomavirus. J Virol 68(6):3982–3989

    PubMed  CAS  Google Scholar 

  42. Norkin LC, Anderson HA, Wolfrom SA, Oppenheim A (2002) Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 76(10):5156–5166

    Article  PubMed  CAS  Google Scholar 

  43. Kawana Y, Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T (2001) Human papillomavirus type 16 minor capsid protein l2 N-terminal region containing a common neutralization epitope binds to the cell surface and enters the cytoplasm. J Virol 75(5):2331–2336

    Article  PubMed  CAS  Google Scholar 

  44. Kondo K, Ishii Y, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358(2):266–272. doi:10.1016/j.virol.2006.08.037

    Article  PubMed  CAS  Google Scholar 

  45. Liu WJ, Gissmann L, Sun XY, Kanjanahaluethai A, Muller M, Doorbar J, Zhou J (1997) Sequence close to the N-terminus of L2 protein is displayed on the surface of bovine papillomavirus type 1 virions. Virology 227(2):474–483. doi:10.1006/viro.1996.8348

    Article  PubMed  CAS  Google Scholar 

  46. Richards RM, Lowy DR, Schiller JT, Day PM (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Nat Acad Sci USA 103(5):1522–1527

    Article  PubMed  CAS  Google Scholar 

  47. Yang R, Day PM, Yutzy WH, Lin KY, Hung CF, Roden RB (2003) Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol 77(6):3531–3541

    Article  PubMed  CAS  Google Scholar 

  48. Li PP, Nakanishi A, Clark SW, Kasamatsu H (2002) Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Nat Acad Sci USA 99(3):1353–1358. doi:10.1073/pnas.032668699

    Article  PubMed  CAS  Google Scholar 

  49. Dean DA, Li PP, Lee LM, Kasamatsu H (1995) Essential role of the Vp2 and Vp3 DNA-binding domain in simian virus 40 morphogenesis. J Virol 69(2):1115–1121

    PubMed  CAS  Google Scholar 

  50. Bordeaux J, Forte S, Harding E, Darshan MS, Klucevsek K, Moroianu J (2006) The l2 minor capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import receptors and viral DNA. J Virol 80(16):8259–8262. doi:10.1128/JVI.00776-06

    Article  PubMed  CAS  Google Scholar 

  51. Buck CB, Thompson CD, Pang YY, Lowy DR, Schiller JT (2005) Maturation of papillomavirus capsids. J Virol 79(5):2839–2846. doi:10.1128/JVI.79.5.2839-2846.2005

    Article  PubMed  CAS  Google Scholar 

  52. Conway MJ, Alam S, Ryndock EJ, Cruz L, Christensen ND, Roden RB, Meyers C (2009) Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions. J Virol 83(20):10515–10526. doi:10.1128/JVI.00731-09

    Article  PubMed  CAS  Google Scholar 

  53. Low JA, Magnuson B, Tsai B, Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80(3):1361–1366. doi:10.1128/JVI.80.3.1361-1366.2006

    Article  PubMed  CAS  Google Scholar 

  54. Smith AE, Lilie H, Helenius A (2003) Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett 555(2):199–203

    Article  PubMed  CAS  Google Scholar 

  55. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22(17):4346–4355

    Article  PubMed  CAS  Google Scholar 

  56. Neu U, Woellner K, Gauglitz G, Stehle T (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Nat Acad Sci USA 105(13):5219–5224. doi:10.1073/pnas.0710301105

    Article  PubMed  CAS  Google Scholar 

  57. Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81(23):12846–12858. doi:10.1128/JVI.01311-07

    Article  PubMed  CAS  Google Scholar 

  58. Neu U, Bauer J, Stehle T (2011) Viruses and sialic acids: rules of engagement. Curr Opin Struct Biol 21(5):610–618. doi:10.1016/j.sbi.2011.08.009

    Article  PubMed  CAS  Google Scholar 

  59. Qian M, Tsai B (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84(19):9840–9852. doi:10.1128/JVI.01093-10

    Article  PubMed  CAS  Google Scholar 

  60. Liu CK, Wei G, Atwood WJ (1998) Infection of glial cells by the human polyomavirus JC is mediated by an N-linked glycoprotein containing terminal alpha(2–6)-linked sialic acids. J Virol 72(6):4643–4649

    PubMed  CAS  Google Scholar 

  61. Neu U, Maginnis MS, Palma AS, Stroh LJ, Nelson CD, Feizi T, Atwood WJ, Stehle T (2010) Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8(4):309–319. doi:10.1016/j.chom.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  62. Maginnis MS, Haley SA, Gee GV, Atwood WJ (2010) Role of N-linked glycosylation of the 5-HT2A receptor in JC virus infection. J Virol 84(19):9677–9684. doi:10.1128/JVI.00978-10

    Article  PubMed  CAS  Google Scholar 

  63. Schowalter RM, Pastrana DV, Buck CB (2011) Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog 7(7):e1002161. doi:10.1371/journal.ppat.1002161

    Article  PubMed  CAS  Google Scholar 

  64. Stehle T, Harrison SC (1997) High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16(16):5139–5148

    Article  PubMed  CAS  Google Scholar 

  65. Stehle T, Yan Y, Benjamin TL, Harrison SC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369(6476):160–163

    Article  PubMed  CAS  Google Scholar 

  66. Cavaldesi M, Caruso M, Sthandier O, Amati P, Garcia MI (2004) Conformational changes of murine polyomavirus capsid proteins induced by sialic acid binding. J Biol Chem 279(40):41573–41579. doi:10.1074/jbc.M405995200

    Article  PubMed  CAS  Google Scholar 

  67. Anderson HA, Chen Y, Norkin LC (1996) Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7(11):1825–1834

    PubMed  CAS  Google Scholar 

  68. Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168(3):477–488

    Article  PubMed  CAS  Google Scholar 

  69. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3(5):473–483

    Article  PubMed  CAS  Google Scholar 

  70. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296(5567):535–539

    Article  PubMed  CAS  Google Scholar 

  71. Querbes W, Benmerah A, Tosoni D, Di Fiore PP, Atwood WJ (2004) A JC virus-induced signal is required for infection of glial cells by a clathrin- and eps15-dependent pathway. J Virol 78(1):250–256

    Article  PubMed  CAS  Google Scholar 

  72. Pho MT, Ashok A, Atwood WJ (2000) JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74(5):2288–2292

    Article  PubMed  CAS  Google Scholar 

  73. Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A (2011) Role of endosomes in simian virus 40 entry and infection. J Virol 85(9):4198–4211. doi:10.1128/JVI.02179-10

    Article  PubMed  CAS  Google Scholar 

  74. Kartenbeck J, Stukenbrok H, Helenius A (1989) Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol 109(6 Pt 1):2721–2729

    Article  PubMed  CAS  Google Scholar 

  75. Qian M, Cai D, Verhey KJ, Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5(6):e1000465. doi:10.1371/journal.ppat.1000465

    Article  PubMed  CAS  Google Scholar 

  76. Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, Helenius A (2007) Simian virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131(3):516–529

    Article  PubMed  CAS  Google Scholar 

  77. Schelhaas M (2010) Come in and take your coat off—how host cells provide endocytosis for virus entry. Cell Microbiol 12(10):1378–1388. doi:10.1111/j.1462-5822.2010.01510.x

    Article  PubMed  CAS  Google Scholar 

  78. Jiang M, Abend JR, Tsai B, Imperiale MJ (2009) Early events during BK virus entry and disassembly. J Virol 83(3):1350–1358. doi:10.1128/JVI.02169-08

    Article  PubMed  CAS  Google Scholar 

  79. Inoue T, Moore P, Tsai B (2011) How viruses and toxins disassemble to enter host cells. Annu Rev Microbiol 65:287–305. doi:10.1146/annurev-micro-090110-102855

    Article  PubMed  CAS  Google Scholar 

  80. Inoue T, Tsai B (2011) A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 7(5):e1002037. doi:10.1371/journal.ppat.1002037

    Article  PubMed  CAS  Google Scholar 

  81. Gilbert J, Ou W, Silver J, Benjamin T (2006) Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J Virol 80(21):10868–10870. doi:10.1128/JVI.01117-06

    Article  PubMed  CAS  Google Scholar 

  82. Walczak CP, Tsai B (2011) A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J Virol 85(5):2386–2396. doi:10.1128/JVI.01855-10

    Article  PubMed  CAS  Google Scholar 

  83. Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S, Heger T, Helenius A (2011) BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat Cell Biol 13(11):1305–1314. doi:10.1038/ncb2339

    Article  PubMed  CAS  Google Scholar 

  84. Goodwin EC, Lipovsky A, Inoue T, Magaldi TG, Edwards AP, Van Goor KE, Paton AW, Paton JC, Atwood WJ, Tsai B, Di Maio D (2011) BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus infection. mBio 2(3):e00101–e00111. doi:10.1128/mBio.00101-11

    Article  PubMed  CAS  Google Scholar 

  85. Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20(2):289–300

    Article  PubMed  CAS  Google Scholar 

  86. Rainey-Barger EK, Magnuson B, Tsai B (2007) A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 81(23):12996–13004. doi:10.1128/JVI.01037-07

    Article  PubMed  CAS  Google Scholar 

  87. Kuksin D, Norkin LC (2012) Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm. J Virol 86(3):1555–1562. doi:10.1128/JVI.05753-11

    Article  PubMed  CAS  Google Scholar 

  88. Daniels R, Rusan NM, Wadsworth P, Hebert DN (2006) SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24(6):955–966. doi:10.1016/j.molcel.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  89. Lilley BN, Gilbert JM, Ploegh HL, Benjamin TL (2006) Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection. J Virol 80(17):8739–8744. doi:10.1128/JVI.00791-06

    Article  PubMed  CAS  Google Scholar 

  90. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840

    Article  PubMed  CAS  Google Scholar 

  91. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  PubMed  CAS  Google Scholar 

  92. Chromy LR, Oltman A, Estes PA, Garcea RL (2006) Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 80(10):5086–5091. doi:10.1128/JVI.80.10.5086-5091.2006

    Article  PubMed  CAS  Google Scholar 

  93. Li PP, Itoh N, Watanabe M, Shi Y, Liu P, Yang HJ, Kasamatsu H (2009) Association of simian virus 40 vp1 with 70-kilodalton heat shock proteins and viral tumor antigens. J Virol 83(1):37–46. doi:10.1128/JVI.00844-08

    Article  PubMed  CAS  Google Scholar 

  94. Florin L, Sapp M, Spoden G (2012) Host cell factors in papillomavirus entry. Med Microbiol Immunol. doi:10.1007/s00430-012-0270-1

  95. Broutian TR, Brendle SA, Christensen ND (2010) Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types. J Gen Virol 91(Pt 2):531–540. doi:10.1099/vir.0.012732-0

    Article  PubMed  CAS  Google Scholar 

  96. Culp TD, Budgeon LR, Christensen ND (2006) Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology 347(1):147–159

    Article  PubMed  CAS  Google Scholar 

  97. Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND (2006) Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80(18):8940–8950

    Article  PubMed  CAS  Google Scholar 

  98. Selinka HC, Florin L, Patel HD, Freitag K, Schmidtke M, Makarov VA, Sapp M (2007) Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81(20):10970–10980

    Article  PubMed  CAS  Google Scholar 

  99. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274(9):5810–5822

    Article  PubMed  CAS  Google Scholar 

  100. Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P (2001) Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett 204(1):183–188

    Article  PubMed  CAS  Google Scholar 

  101. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75(3):1565–1570

    Article  PubMed  CAS  Google Scholar 

  102. Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77(24):13125–13135

    Article  PubMed  CAS  Google Scholar 

  103. Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83(5):2067–2074. doi:10.1128/JVI.02190-08

    Article  PubMed  CAS  Google Scholar 

  104. Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Nat Acad Sci USA 106(48):20458–20463. doi:10.1073/pnas.0908502106

    Article  PubMed  CAS  Google Scholar 

  105. Surviladze Z, Dziduszko A, Ozbun MA (2012) Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog 8(2):e1002519. doi:10.1371/journal.ppat.1002519

    Article  PubMed  CAS  Google Scholar 

  106. Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13(7):857–861

    Article  PubMed  CAS  Google Scholar 

  107. Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2(7):e69. doi:10.1371/journal.ppat.0020069

    Article  PubMed  CAS  Google Scholar 

  108. Patterson NA, Smith JL, Ozbun MA (2005) Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate. J Virol 79(11):6838–6847. doi:10.1128/JVI.79.11.6838-6847.2005

    Article  PubMed  CAS  Google Scholar 

  109. Selinka HC, Giroglou T, Nowak T, Christensen ND, Sapp M (2003) Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol 77(24):12961–12967

    Article  PubMed  CAS  Google Scholar 

  110. Day PM, Gambhira R, Roden RB, Lowy DR, Schiller JT (2008) Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol 82(9):4638–4646

    Article  PubMed  CAS  Google Scholar 

  111. Bienkowska-Haba M, Patel HD, Sapp M (2009) Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog 5(7):e1000524. doi:10.1371/journal.ppat.1000524

    Article  PubMed  CAS  Google Scholar 

  112. Day PM, Baker CC, Lowy DR, Schiller JT (2004) Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Nat Acad Sci USA 101(39):14252–14257. doi:10.1073/pnas.0404229101

    Article  PubMed  CAS  Google Scholar 

  113. Day PM, Lowy DR, Schiller JT (2008) Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 82(24):12565–12568. doi:10.1128/JVI.01631-08

    Article  PubMed  CAS  Google Scholar 

  114. Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8(4):e1002657. doi:10.1371/journal.ppat.1002657

    Article  PubMed  CAS  Google Scholar 

  115. Hindmarsh PL, Laimins LA (2007) Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 4:19. doi:10.1186/1743-422X-4-19

    Article  PubMed  CAS  Google Scholar 

  116. Bousarghin L, Touze A, Sizaret PY, Coursaget P (2003) Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77(6):3846–3850

    Article  PubMed  CAS  Google Scholar 

  117. Smith JL, Campos SK, Wandinger-Ness A, Ozbun MA (2008) Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol 82(19):9505–9512. doi:10.1128/JVI.01014-08

    Article  PubMed  CAS  Google Scholar 

  118. Smith JL, Campos SK, Ozbun MA (2007) Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 81(18):9922–9931

    Article  PubMed  CAS  Google Scholar 

  119. Day PM, Lowy DR, Schiller JT (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307(1):1–11

    Article  PubMed  CAS  Google Scholar 

  120. Laniosz V, Holthusen KA, Meneses PI (2008) Bovine papillomavirus type 1: from clathrin to caveolin. J Virol 82(13):6288–6298. doi:10.1128/JVI.00569-08

    Article  PubMed  CAS  Google Scholar 

  121. Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C, Florin L (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16–involvement of tetraspanin-enriched microdomains (TEMs). PLoS ONE 3(10):e3313. doi:10.1371/journal.pone.0003313

    Article  PubMed  CAS  Google Scholar 

  122. Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M (2012) Cyclophilins facilitate dissociation of the HPV16 capsid protein L1 from the L2/DNA complex following virus entry. J Virol. doi:10.1128/JVI.00980-12

    PubMed  Google Scholar 

  123. Selinka HC, Giroglou T, Sapp M (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299(2):279–287

    Article  PubMed  CAS  Google Scholar 

  124. Dabydeen SA, Meneses PI (2009) The role of NH4Cl and cysteine proteases in Human Papillomavirus type 16 infection. Virol J 6:109. doi:10.1186/1743-422X-6-109

    Article  PubMed  CAS  Google Scholar 

  125. Karanam B, Peng S, Li T, Buck C, Day PM, Roden RB (2010) Papillomavirus infection requires gamma secretase. J Virol 84(20):10661–10670. doi:10.1128/JVI.01081-10

    Article  PubMed  CAS  Google Scholar 

  126. Bergant Marusic M, Ozbun MA, Campos SK, Myers MP, Banks L (2012) Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic 13(3):455–467. doi:10.1111/j.1600-0854.2011.01320.x

    Article  PubMed  CAS  Google Scholar 

  127. Campos SK, Ozbun MA (2009) Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS ONE 4(2):e4463. doi:10.1371/journal.pone.0004463

    Article  PubMed  CAS  Google Scholar 

  128. Sapp M, Kraus U, Volpers C, Snijders PJ, Walboomers JM, Streeck RE (1994) Analysis of type-restricted and cross-reactive epitopes on virus-like particles of human papillomavirus type 33 and in infected tissues using monoclonal antibodies to the major capsid protein. J Gen Virol 75(Pt 12):3375–3383

    Article  PubMed  CAS  Google Scholar 

  129. Schneider MA, Spoden GA, Florin L, Lambert C (2011) Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol 13(1):32–46. doi:10.1111/j.1462-5822.2010.01515.x

    Article  PubMed  CAS  Google Scholar 

  130. Campos SK, Chapman JA, Deymier MJ, Bronnimann MP, Ozbun MA (2012) Opposing effects of bacitracin on human papillomavirus type 16 infection: enhancement of binding and entry and inhibition of endosomal penetration. J Virol 86(8):4169–4181. doi:10.1128/JVI.05493-11

    Article  PubMed  CAS  Google Scholar 

  131. Karala AR, Ruddock LW (2010) Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J 277(11):2454–2462. doi:10.1111/j.1742-4658.2010.07660.x

    Article  PubMed  CAS  Google Scholar 

  132. Kamper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80(2):759–768. doi:10.1128/JVI.80.2.759-768.2006

    Article  PubMed  CAS  Google Scholar 

  133. Baker TS, Drak J, Bina M (1988) Reconstruction of the three-dimensional structure of simian virus 40 and visualization of the chromatin core. Proc Nat Acad Sci USA 85(2):422–426

    Article  PubMed  CAS  Google Scholar 

  134. Rayment I, Baker TS, Caspar DL, Murakami WT (1982) Polyoma virus capsid structure at 22.5 A resolution. Nature 295(5845):110–115

    Article  PubMed  CAS  Google Scholar 

  135. Roth SD, Sapp M, Streeck RE, Selinka HC (2006) Characterization of neutralizing epitopes within the major capsid protein of human papillomavirus type 33. Virol J 3:83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help of Dr. R. Mancini in acquisition of electron micrographs. We apologize to all those great individuals who have advanced the field of polyoma- and papillomavirus structure and entry, and who were not mentioned in the manuscript due to space limitations. MS and CC were supported by the German Science Foundation (DFG, Emmy-Noether grant SCHE 1552/2-1) and by the Portuguese Foundation for Science and Technology (PhD grant SFRH/BD/45921/2008), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Schelhaas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerqueira, C., Schelhaas, M. Principles of polyoma- and papillomavirus uncoating. Med Microbiol Immunol 201, 427–436 (2012). https://doi.org/10.1007/s00430-012-0262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0262-1

Keywords

Navigation