Skip to main content
Log in

Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus can be internalized by non-professional phagocytes, and may colonize the intestine in normal and antibiotic-treated individuals. Intestinal colonization may depend on the interactions of S. aureus with the intestinal epithelium. The best described mechanism of S. aureus binding to eukaryotic cells involves S. aureus fibronectin binding proteins (FnBPs), using fibronectin as a bridging molecule to β1 integrins on the eukaryotic cell surface. Because S. aureus can be internalized by enterocytes, and because S. aureus is known to bind heparan sulfate (HS), we hypothesized that heparan sulfate proteoglycans (HSPGs) widely expressed on epithelia may mediate S. aureus interactions with intestinal epithelial cells. Internalization of S. aureus RN6390 by cultured intestinal epithelial cells was inhibited in a dose-dependent fashion by the HS mimic heparin, and by HS itself. Internalization of S. aureus DU5883, which lacks expression of staphylococcal FnBPs, was also inhibited by heparin. S. aureus adherence to ARH-77 cells, transfected to express the HSPG syndecan-1, was greatly increased when compared to adherence to plasmid control ARH-77 cells which have little detergent extractable HS. In addition, compared to wild-type HS-expressing Chinese hamster ovary (CHO) cells, internalization of S. aureus was decreased using mutant CHO cells with decreased HS expression. These findings are consistent with a model wherein S. aureus internalization by intestinal epithelial cells (and perhaps other epithelia) is mediated by S. aureus binding to the HS moiety of cell-surface HSPGs, and this interaction appears independent of fibronectin binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Hook M (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMS and host cell β1 integrins. Eur J Cell Biol 79:672–679

    Article  PubMed  CAS  Google Scholar 

  2. Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol 164:3717–3722

    Google Scholar 

  3. Kahl BC, Goulian M, Wamel Wv, Herrmann M, Simon SM, Kaplan G, Peters G, Cheung AL (2000) Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun 68:5385–5392

    Article  PubMed  CAS  Google Scholar 

  4. Kintarak S, Whawell S, Speight P, Packer S, Nair S (2004) Internalization of Staphylococcus aureus by human keratinocytes. Infect Immun 72:5668–5675

    Article  PubMed  CAS  Google Scholar 

  5. Jett B, Gilmore M (2002) Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infect Immun 70:4697–4700

    Article  PubMed  CAS  Google Scholar 

  6. Finegold SM, Mathisen GE, George WL (1983) Changes in human intestinal flora related to the administration of antimicrobial agents. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, pp 355–446

    Google Scholar 

  7. Clark NM, Hershberger E, Zervosc MJ, Lynch JP (2003) Antimicrobial resistance among gram-positive organisms in the intensive care unit. Curr Opin Crit Care 9:403–412

    Article  PubMed  Google Scholar 

  8. Greene C, McDevitt D, Francois P, Vaudaux PE, Lew DP, Foster TJ (1995) Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol 17:1143–1152

    Article  PubMed  CAS  Google Scholar 

  9. Sinha B, Francois P, Que Y-A, Hussain M, Heilmann C, Moreillon P, Lew D, Krause K-H, Peters G, Herrmann M (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68:6871–6878

    Article  PubMed  CAS  Google Scholar 

  10. Ahmed S, Meghji S, Williams R, Henderson B, Brock J, Nair S (2001) Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69:2872–2877

    Article  PubMed  CAS  Google Scholar 

  11. Brouillette E, Grondin G, Shkreta L, Lacasse P, Talbot B (2003) In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin binding proteins. Microb Pathog 35:159–168

    Article  PubMed  CAS  Google Scholar 

  12. Mongodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, Bentzmann S (2002) Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun 70:620–630

    PubMed  CAS  Google Scholar 

  13. Duensing TD, Wing JS, van Putten JPM (1999) Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 67:4463–4468

    PubMed  CAS  Google Scholar 

  14. Fleckstein JM, Holland JT, Hasty DL (2002) Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect Immun 70:1530–1537

    Article  PubMed  CAS  Google Scholar 

  15. Rostand KS, Esko JD (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65:1–8

    PubMed  CAS  Google Scholar 

  16. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    Article  PubMed  CAS  Google Scholar 

  17. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  18. Liang OD, Ascencio F, Fransson LA, Wadstrom T (1992) Binding of heparan sulfate to Staphylococcus aureus. Infect Immun 60:899–906

    PubMed  CAS  Google Scholar 

  19. Henry-Stanley MJ, Hess DJ, Erickson EA, Garni RM, Wells CL (2003) Role of heparan sulfate in interaction of Listeria monocytogenes with enterocytes. Med Microbiol Immunol 192:107–115

    PubMed  CAS  Google Scholar 

  20. Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66:5994–5998

    PubMed  CAS  Google Scholar 

  21. Hidalgo I, Raub T, Borchardt R (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial cell permeability. Gastroenterology 96:736–749

    PubMed  CAS  Google Scholar 

  22. Neutra M, Louvard D (1989) Differentiation of intestinal epithelial cells in vitro. In: Satir BH (ed) Functional epithelial cells in culture. AR Liss, New York, pp 363–98

    Google Scholar 

  23. Pinto M, Robine-Leon S, Apay M, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assman P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon cancer cell line Caco-2 in culture. Biol Cell 47:3223–3228

    Google Scholar 

  24. Wells CL, Jechorek RP, Olmsted SB, Erlandsen SL (1994) Bacterial translocation in cultured enterocytes: magnitude, specificity, and electron microscopic observations of endocytosis. Shock 1:1443–1451

    Article  Google Scholar 

  25. Wells CL, van de Westerlo EMA, Jechorek RP, Erlandsen SL (1998) Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66:2410–2419

    PubMed  CAS  Google Scholar 

  26. Wells CL, van de Westerlo EMA, Jechorek RP, Feltis BA, Wilkins TD, Erlandsen SL (1996) Bacteroides fragilis enterotoxin modulates epithelial permeability and bacterial internalization by HT-29 enterocytes. Gastroenterol 110:1429–1437

    Article  CAS  Google Scholar 

  27. Wells CL, van de Westerlo EMA, Jechorek RP, Erlandsen SL (1995) Exposure of the lateral enterocyte membrane by dissociation of calcium-dependent junctional complex augments endocytosis of enteric bacteria. Shock 4:204–210

    Article  PubMed  CAS  Google Scholar 

  28. Day R, Ilyas M, Daszak P, Talbot I, Forbes A (1999) Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci 44:2508–2515

    Article  PubMed  CAS  Google Scholar 

  29. Hess DJ, Henry-Stanley MJ, Moore EA, Wells CL (2001) Integrin expression, enterocyte maturation, and bacterial internalization. J Surg Res 98:116–122

    Article  PubMed  CAS  Google Scholar 

  30. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Ann Rev Biochem 60:443–475

    Article  PubMed  CAS  Google Scholar 

  31. Stanley MJ, Liebersbach BF, Liu W, Anhalt DJ, Sanderson RD (1995) Heparan sulfate-mediated cell aggregation: syndecans-1 and -4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J Biol Chem 270:5077–5083

    Article  PubMed  CAS  Google Scholar 

  32. Lidholt K, Weinke JL, Kiser CS, Lugemwa FN, Bame KJ, Cheifetz S, Massague J, Lindahl U, Esko JD (1992) A single mutation affects both N-acetylglucosamine/transferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci USA 89:2267–2271

    Article  PubMed  CAS  Google Scholar 

  33. Esko JD, Stewart TE, Taylor WH (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 82:3197–3201

    Article  PubMed  CAS  Google Scholar 

  34. Liebersbach BF, Sanderson RD (1994) Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem 269:20013–20019

    PubMed  CAS  Google Scholar 

  35. Vaudaux P, Avramoglou T, Letourneur D, Lew DP, Jozefonvicz J (1992) Inhibition by heparin and derivatized dextrans of Staphylococcus aureus adhesion to fibronectin-coated biomaterials. J Biomat Sci Polym Ed 4:89–97

    Article  CAS  Google Scholar 

  36. Rimland D, Roberson B (1986) Gastrointestinal carriage of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 24:137–138

    PubMed  CAS  Google Scholar 

  37. Hess DJ, Henry-Stanley MJ, Erickson EA, Wells CL (2003) Intracellular survival of Staphylococcus aureus within cultured enterocytes. J Surg Res 114:42–49

    Article  PubMed  CAS  Google Scholar 

  38. Liang OD, Flock JI, Wadstrom T (1995) Isolation and characterization of a vitronectin-binding surface protein from Staphylococcus aureus. Biochim Biophys Acta 1250:110–116

    PubMed  Google Scholar 

  39. Kazmierczak BI, Mostov K, Engel JN (2001) Interaction of bacterial pathogens with polarized epithelium. Ann Rev Microbiol 55:407–435

    Article  CAS  Google Scholar 

  40. Wells CL, Moore EA, Hoag JA, Hirt H, Dunny GM, Erlandsen SL (2000) Inducible expression of Enterococcus faecalis aggregation substance surface protein facilitates bacterial internalization of cultured enterocytes. Infect Immun 68:7190–7194

    Article  PubMed  CAS  Google Scholar 

  41. Hayashi K, Hayashi M, Jalkanen M, Firestone JH, Trelstad RL, Bernfield M (1987) Immunohistochemistry of cell surface heparan sulfate proteoglycan in mouse tissues: a light and electron microscopic study. J Histochem Cytochem 35:1079–1088

    PubMed  CAS  Google Scholar 

  42. De-Souza DA, Greene LJ (2005) Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit Care Med 33:1125–1135

    Article  PubMed  Google Scholar 

  43. Laupland KB, Kirkpatrick AW, Church DL, Ross T, Gregson DB (2004) Intensive-care-unit-acquired bloodstream infections in a regional critically ill population. J Hosp Infect 58:137–145

    Article  PubMed  CAS  Google Scholar 

  44. Clarke SR, Harris LG, Richards RG, Foster SJ (2002) Analysis of Ebh, a 1.1 megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus. Infect Immun 70:6680–6687

    Article  PubMed  CAS  Google Scholar 

  45. Harraghy N, Hussain M, Haggar A, Chavakis T, Sinha B, Herrmann M, Flock J-I (2003) The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiol 149:2701–2707

    Article  CAS  Google Scholar 

  46. van Putten J, Duensing T, Cole R (1998) Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin, and integrin receptors. Mol Microbiol 29:369–379

    Article  PubMed  Google Scholar 

  47. Dziewanowska K, Carson A, Patti J, Deobald C, Bayles K, Bohach G (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by U.S. Public Health Service grants AI 49686 (DH) and GM 066751 (CW) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, D.J., Henry-Stanley, M.J., Erlandsen, S.L. et al. Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium. Med Microbiol Immunol 195, 133–141 (2006). https://doi.org/10.1007/s00430-005-0007-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0007-5

Keywords

Navigation