Skip to main content
Log in

Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The human brain spends several years bootstrapping itself through intrinsic and extrinsic modulation, thus gradually developing both spatial organization and functions. Based on previous studies on developmental patterns and inter-individual variability of the corpus callosum (CC), we hypothesized that inherent variations of CC shape among infants emerge, depending on the position within the CC, along the developmental timeline. Here we used longitudinal magnetic resonance imaging data from infancy to toddlerhood and investigated the area, thickness, and shape of the midsagittal plane of the CC by applying multilevel modeling. The shape characteristics were extracted using the Procrustes method. We found nonlinearity, region-dependency, and inter-individual variability, as well as intra-individual consistencies, in CC development. Overall, the growth rate is faster in the first year than in the second year, and the trajectory differs between infants; the direction of CC formation in individual infants was determined within six months and maintained to two years. The anterior and posterior subregions increase in area and thickness faster than other subregions. Moreover, we clarified that the growth rate of the middle part of the CC is faster in the second year than in the first year in some individuals. Since the division of regions exhibiting different tendencies coincides with previously reported divisions based on the diameter of axons that make up the region, our results suggest that subregion-dependent individual variability occurs due to the increase in the diameter of the axon caliber, myelination partly due to experience and axon elimination during the early developmental period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aboitiz F, Montiel J (2003) One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 36:409–420

    Article  CAS  PubMed  Google Scholar 

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153

    Article  CAS  PubMed  Google Scholar 

  • Adamson CL, Wood AG, Chen J et al (2011) Thickness profile generation for the corpus callosum using Laplace’s equation. Hum Brain Mapp 32(12):2131–2140

    Article  PubMed  PubMed Central  Google Scholar 

  • Almli CR, Rivkin MJ, McKinstry RC, Group BDC et al (2007) The NIH MRI study of normal brain development (Objective-2): newborns, infants, toddlers, and preschoolers. NeuroImage 35:308–325

    Article  CAS  PubMed  Google Scholar 

  • Ansado J, Collins L, Fonov V, Garon M, Alexandrov L, Karama S, Evans A, Beauchamp MH (2015) A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Eur J Neurosci 42:1675–1684

    Article  PubMed  Google Scholar 

  • Ardekani B (2013) yuki module of the automatic registration toolbox (ART) for corpus callosum segmentation. http://www.nitrc.org/projects/art/. Accessed 26 Aug 2021

  • Ardekani BA, Figarsky K, Sidtis JJ (2012) Sexual dimorphism in the human corpus callosum: an MRI study using the oasis brain database. Cereb Cortex 23:2514–2520

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ (2014) Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database. Brain Struct Funct 219:343–352

    Article  PubMed  Google Scholar 

  • Bachman AH, Lee SH, Sidtis JJ, Ardekani BA (2014) Corpus callosum shape and size changes in early Alzheimer’s disease: a longitudinal MRI study using the OASIS brain database. J Alzheimer’s Dis 39:71–78

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57(1):289–300

    Google Scholar 

  • Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans J, Pike G, Veijola J, Paus T (2017) Structural properties of the human corpus callosum: multimodal assessment and sex differences. Neuroimage 152:108–118

    Article  PubMed  Google Scholar 

  • Bookstein FL (1996) Biometrics, biomathematics and the morphometric synthesis. Bull Math Biol 58:313

    Article  CAS  PubMed  Google Scholar 

  • Brakke K, Pacheco MM (2019) The development of bimanual coordination across toddlerhood. Monogr Soc Res Child Dev 84(2):7–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruner E, de la Cuetara JM, Colom R, Martin-Loeches M (2012) Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220(4):417–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Catani M, de Schotten MT (2012) Atlas of human brain connections. Oxford University Press, London

    Book  Google Scholar 

  • Chiang MC, Barysheva M, Shattuck DW et al (2009) Genetics of brain fiber architecture and intellectual performance. J Neurosci 29(7):2212–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke S, Kraftsik R, van der Loos H, Innocenti GM (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 280(2):213–230

    Article  CAS  PubMed  Google Scholar 

  • de Santis S, Jones DK, Roebroeck A (2016) Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 130:91–103

    Article  PubMed  Google Scholar 

  • Dean DC III, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Walker L, Deoni SC (2014) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752

    Article  PubMed  Google Scholar 

  • Dubb A, Gur R, Avants B, Gee J (2003) Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20:512–519

    Article  PubMed  Google Scholar 

  • Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci 105:4028–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fick RH, Wassermann D, Caruyer E, Deriche R (2016) MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134:365–385

    Article  PubMed  Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci 104:15531–15536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friederici AD, von Cramon DY, Kotz SA (2007) Role of the corpus callosum in speech comprehension: interfacing syntax and prosody. Neuron 53(1):135–145

    Article  CAS  PubMed  Google Scholar 

  • Friedrich P, Fraenz C, Schlüter C, Ocklenburg S, Mädler B, Güntürkün O, Genç E (2020) The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum. Cereb Cortex 30(4):2042–2056

    Article  PubMed  Google Scholar 

  • Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci 106:6790–6795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W (2011) Temporal and spatial evolution of brain network topology during the first two years of life. PloS One 6:e25278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67(5):728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkins KD, Xu J, Dula AN, Li K, Valentine WM, Gochberg DF, Gore JC, Does MD (2016) The microstructural correlates of T1 in white matter. Magn Reson Med 75:1341–1345

    Article  CAS  PubMed  Google Scholar 

  • Hasan KM, Kamali A, Iftikhar A, Kramer LA, Papanicolaou AC, Fletcher JM, Ewing-Cobbs L (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100

    Article  CAS  PubMed  Google Scholar 

  • Heath C, Jones E (1971) Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connexions in the marsupial phalanger. J anat 109:253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkley LB, Marco EJ, Findlay AM et al (2012) The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One 7:e39804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994

    Article  PubMed  Google Scholar 

  • Hofer S, Merboldt KD, Tammer R, Frahm J (2008) Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 18(5):1079–1084

    Article  PubMed  Google Scholar 

  • Holloway RL, Anderson PJ, Defendini R, Harper C (1993) Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. Am J Phys Anthropol 92:481–498

    Article  CAS  PubMed  Google Scholar 

  • Homae F (2014) A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy. NeuroImage 85:354–362

    Article  PubMed  Google Scholar 

  • Homae F, Watanabe H, Otobe T, Nakano T, Go T, Konishi Y, Taga G (2010) Development of global cortical networks in early infancy. J Neurosci 30:4877–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. NeuroImage 26(1):195–205

    Article  PubMed  Google Scholar 

  • Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA (2015) The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. NeuroImage 106:464–472

    Article  PubMed  Google Scholar 

  • Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H (1991) Corpus callosum morphology in attention deficit-hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 24(3):141–146

    Article  CAS  PubMed  Google Scholar 

  • Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965

    Article  CAS  PubMed  Google Scholar 

  • Jarvis E (2010) Bird brain: evolution. Encycl Neurosci 2:209–215

    Google Scholar 

  • Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 11(1):12–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmiloff-Smith A (2010) Neuroimaging of the developing brain: taking “developing” seriously. Hum Brain Mapp 31(6):934–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelsey CM, Farris K, Grossmann T (2021) Variability in infants’ functional brain network connectivity is associated with differences in affect and behavior. Front Psych 12:896

    Google Scholar 

  • Klingenberg CP (2011) Morphoj: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26

    Article  Google Scholar 

  • LaMantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10(7):2156–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374

    Article  CAS  PubMed  Google Scholar 

  • Lebel C, Deoni S (2018) The development of brain white matter microstructure. NeuroImage 182:207–218

    Article  PubMed  Google Scholar 

  • Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52:20–31

    Article  PubMed  Google Scholar 

  • Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, Shen D (2012) Mapping region–specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 23:2724–2733

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2013) Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex 24:1289–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014) Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 34:4228–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luders E, Narr KL, Bilder RM, Thompson PM, Szeszko PR, Hamilton L, Toga AW (2007) Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37:1457–1464

    Article  PubMed  Google Scholar 

  • Luders E, Thompson PM, Toga AW (2010) The development of the corpus callosum in the healthy human brain. J Neurosci 30(33):10985–10990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M (2014) The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 137:e268–e268

    Article  PubMed  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Hans J, Nicholson C (2014) The central nervous system of vertebrates. Springer, Berlin

    Google Scholar 

  • Oishi K, Faria AV, van Zijl PC, Mori S (2010) MRI atlas of human white matter, 2nd edn. Academic Press, London

    Google Scholar 

  • Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72(1):26–35

    Article  PubMed  Google Scholar 

  • Paus T, Pesaresi M, French L (2014) White matter as a transport system. Neuroscience 276:117–125

    Article  CAS  PubMed  Google Scholar 

  • Peters M, Oeltze S, Seminowicz D, Steinmetz H, Koeneke S, J¨ancke L (2002) Division of the corpus callosum into subregions. Brain Cogn 50:62–72

    Article  CAS  PubMed  Google Scholar 

  • Prendergast DM, Ardekani B, Ikuta T, John M, Peters B, DeRosse P, Wellington R, Malhotra AK, Szeszko PR (2015) Age and sex effects on corpus callosum morphology across the lifespan. Hum Brain Mapp 36(7):2691–2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds JE, Grohs MN, Dewey D, Lebel C (2019) Global and regional white matter development in early childhood. Neuroimage 196:49–58

    Article  PubMed  Google Scholar 

  • Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. NeuroImage 68:236–247

    Article  PubMed  Google Scholar 

  • Sakai T, Komaki Y, Hata J et al (2017a) Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neurosci Res 122:25–34

    Article  PubMed  Google Scholar 

  • Sakai T, Mikami A, Suzuki J, Miyabe-Nishiwaki T, Matsui M, Tomonaga M, Hamada Y, Matsuzawa T, Okano H, Oishi K (2017b) Developmental trajectory of the corpus callosum from infancy to the juvenile stage: comparative MRI between chimpanzees and humans. PloS One 12:e0179624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmied A, Soda T, Gerig G, Styner M, Swanson MR, Elison JT, Estes AM (2020) Sex differences associated with corpus callosum development in human infants: a longitudinal multimodal imaging study. NeuroImage 215:116821

    Article  PubMed  Google Scholar 

  • Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33(3):1282–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens RL, Langworthy BW, Short SJ, Girault JB, Styner MA, Gilmore JH (2020) White matter development from birth to 6 years of age: a longitudinal study. Cereb Cortex 30(12):6152–6168

    Article  PubMed  PubMed Central  Google Scholar 

  • Taga G, Watanabe H, Homae F (2018) Developmental changes in cortical sensory processing during wakefulness and sleep. NeuroImage 178:519–530

    Article  PubMed  Google Scholar 

  • Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K (2015) Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PloS One 10:e0118760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarui T, Madan N, Farhat N et al (2017) Disorganized patterns of sulcal position in fetal brains with agenesis of corpus callosum. Cereb Cortex 28:3192–3203

    Article  PubMed Central  Google Scholar 

  • Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C (2020) Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. NeuroImage 210:116533

    Article  PubMed  Google Scholar 

  • Tsuzuki D, Homae F, Taga G, Watanabe H, Matsui M, Dan I (2017) Macroanatomical landmarks featuring junctions of major sulci and fissures and scalp landmarks based on the international 10–10 system for analyzing lateral cortical development of infants. Front Neurosci 11:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Schependom J, Niemantsverdriet E, Smeets D, Engelborghs S (2018) Callosal circularity as an early marker for Alzheimer’s disease. NeuroImage: Clin 19:516–526

    Article  Google Scholar 

  • Vannucci RC, Barron TF, Vannucci SJ (2017) Development of the corpus callosum: an MRI Study. Dev Neurosci 39:97–106

    Article  CAS  PubMed  Google Scholar 

  • Vidal CN, Nicolson R, DeVito TJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiat 60:218–225

    Article  PubMed  Google Scholar 

  • Vinken P, Bruyn G (1969) Handbook of clinical neurology. North Holland, Amsterdam

    Google Scholar 

  • von Plessen K, Lundervold A, Duta N, Heiervang E, Klauschen F, Smievoll AI, Hugdahl K (2002) Less developed corpus callosum in dyslexic subjects—a structural MRI study. Neuropsychologia 40(7):1035–1044

    Article  Google Scholar 

  • Westerhausen R, Fjell AM, Krogsrud SK, Rohani DA, Skranes JS, H˚abergWalhovd AKKB (2016) Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. Neuroimage 139:17–25

    Article  PubMed  Google Scholar 

  • Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835

    Article  PubMed  Google Scholar 

  • Witelson SF, Kigar DL, Scamvougeras A et al (2008) Corpus callosum anatomy in right-handed homosexual and heterosexual men. Arch Sex Behav 37(6):857–863

    Article  PubMed  Google Scholar 

  • Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, Botteron KN, Elison JT, Dager SR, Estes AM et al (2015) Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 138:2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung MS, Zdunek S, Bergmann O et al (2014) Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–774

    Article  CAS  PubMed  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, London

    Google Scholar 

  • Zito G, Luders E, Tomasevic L, Lupoi D, Toga AW, Thompson PM, Rossini PM, Filippi MM, Tecchio F (2014) Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis. Neuroscience 266:47–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Michiko Matsumoto and Yoko Moriya for their technical support, and Kayo Sato, Tomoko Yoneyama, and Izumi Kishida for their administrative assistance. Data used in the preparation of this manuscript were obtained from the National Institute of Mental Health (NIMH) Data Archive (NDA). The NDA is a collaborative informatics system created by the National Institute of Health (NIH) to provide a national resource to support and accelerate research in mental health. Dataset identifier: 10. 15154/1524714. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or of those submitting original data to the NDA.

Funding

This work was supported by JSPS KAKENHI [Grant Numbers JP16K21734, JP16H06525, JP20H03557, JP19KK0247].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tsuzuki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Availability of data and material

The datasets generated and analyzed during the current study are available in the NDA study repository, https://nda.nih.gov/study.html?id=1481.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1629 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuzuki, D., Taga, G., Watanabe, H. et al. Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis. Brain Struct Funct 227, 1995–2013 (2022). https://doi.org/10.1007/s00429-022-02485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02485-y

Keywords

Navigation