Skip to main content
Log in

Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum)

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Using the expression of the immediate early gene (IEG) egr-1 as a neuronal activity marker, brain regions potentially involved in learning and long-term memory functions in the grey bamboo shark were assessed with respect to selected visual discrimination abilities. Immunocytochemistry revealed a significant up-regulation of egr-1 expression levels in a small region of the telencephalon of all trained sharks (i.e., ‘early’ and ‘late learners’, ‘recallers’) when compared to three control groups (i.e., ‘controls’, ‘undisturbed swimmers’, ‘constant movers’). There was also a well-defined difference in egr-1 expression patterns between the three control groups. Additionally, some staining was observed in diencephalic and mesencephalic sections; however, staining here was weak and occurred only irregularly within and between groups. Therefore, it could have either resulted from unintentional cognitive or non-cognitive inducements (i.e., relating to the mental processes of perception, learning, memory, and judgment, as contrasted with emotional and volitional processes) rather than being a training effect. Present findings emphasize a relationship between the training conditions and the corresponding egr-1 expression levels found in the telencephalon of Chiloscyllium griseum. Results suggest important similarities in the neuronal plasticity and activity-dependent IEG expression of the elasmobranch brain with other vertebrate groups. The presence of the egr-1 gene seems to be evolutionarily conserved and may therefore be particularly useful for identifying functional neural responses within this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham WC, Demmer J, Richardson CL, Williams JM, Lawlor PA, Mason SE et al (1993) Correlation between immediate early gene induction and persistence of LTP. Neuroscience 56:717–727

    CAS  PubMed  Google Scholar 

  • Alcock J (2006) Animal behavior—an evolutionary approach, 8th edn. Elsevier, Munich, pp 88–89

    Google Scholar 

  • Anadón R, Rodríguez-Moldes I, Adrio F (2013) Glycine-immunoreactive neurons in the brain of a shark (Scyliorhinus canicula L.). J Comp Neurol 521(13):3057–3082

    PubMed  Google Scholar 

  • Anokhin K, Mileusnic R, Shamakina I, Rose S (1991) Effects of early experience on c-fos gene expression in the chick forebrain. Brain Res 544(1):101–107

    CAS  PubMed  Google Scholar 

  • Baraban S, Taylor M, Castro P, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768

    CAS  PubMed  Google Scholar 

  • Baumgärtel K, Genoux D, Welzl H, Tweedie-Cullen RY, Koshibu K, Livingstone-Zatchej M, Mamie C, Mansuy IM (2008) Control of the establishment of aversive memory by calcineurin and Zif268. Nat Neurosci 11(5):572–578

    PubMed  Google Scholar 

  • Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31:477–510

    CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  PubMed  Google Scholar 

  • Bodznick D (1990) Elasmobranch vision: multimodal integration in the brain. J Exp Zool 256(S5):108–116

    Google Scholar 

  • Bolhuis JJ, Zijlstra GO, den Boer-Visser AM, Van der Zee EA (2000) Localised neuronal activation in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci USA 97:2282–2285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch TJ, Maslam S, Roberts BL (1995) A polyclonal antibody against mammalian FOS can be used as a cytoplasmic neuronal-activity marker in a teleost fish. J Neurosci Methods 58:173–179

    CAS  PubMed  Google Scholar 

  • Bosch TJ, Maslam S, Roberts BL (2001) Fos-like immunohistochemical identification of neurons active during the startle response of the rainbow trout. J Comp Neurol 439:306–314

    CAS  PubMed  Google Scholar 

  • Bozon B, Davis S, Laroche S (2002) Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus 12(5):570–577

    CAS  PubMed  Google Scholar 

  • Bozon B, Davis S, Laroche S (2003a) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40(4):695–701

    CAS  PubMed  Google Scholar 

  • Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003b) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc B Biol Sci 358(1432):805–814

    CAS  Google Scholar 

  • Brown TH, Chattarji S (1994) Hebbian synaptic plasticity: evolution of the contemporary concept. In: Domany PE, Hemmen PD, Schulten PK (eds) Models of neural networks, physics of neural networks. Springer, New York, pp 287–314

    Google Scholar 

  • Burmeister SS, Fernald RD (2005) Evolutionary conservation of the egr-1 immediate-early gene response in a teleost. J Comp Neurol 481(2):220–232

    CAS  PubMed  Google Scholar 

  • Burmeister S, Jarvis E, Fernald R (2005) Rapid behavioral and genomic responses to social opportunity. PLoS Biol 3(11):e363

    PubMed  PubMed Central  Google Scholar 

  • Cao XM, Koski RA, Gashler A, McKiernan M, Morris CF, Gaffney R, Hay RV, Sukhatme VP (1990) Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 10(5):1931–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera I, Molist P, Anadón R, Rodríguez-Moldes I (2008) Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol 511(6):804–831

    CAS  PubMed  Google Scholar 

  • Clark E (1959) Instrumental conditioning of lemon sharks. Science 130(3369):217–218

    CAS  PubMed  Google Scholar 

  • Clayton DF (1997) Role of gene regulation in song circuit development and song learning. J Neurobiol 33:549–571

    CAS  PubMed  Google Scholar 

  • Collin SP (2012) The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behav Evol 80:80–96

    PubMed  Google Scholar 

  • Crino P, Khodakhah K, Becker K, Ginsberg S, Hemby S, Eberwine J (1998) Presence and phosphorylation of transcription factors in developing dendrites. Proc Natl Acad Sci 95(5):2313–2318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142(1–2):17–30

    CAS  PubMed  Google Scholar 

  • Day ML, Fahrner TJ, Aykent S, Milbrandt J (1990) The zinc finger protein NGFI-A exists in both nuclear and cytoplasmic forms in nerve growth factor-stimulated PC12 cells. J Biol Chem 265(25):15253–15260

    CAS  PubMed  Google Scholar 

  • Ding L, Perkel DJ (2004) Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning. J Neurosci 24(2):488–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dragunow M (1996) A role for immediate early transcription factors in learning and memory. Behav Genet 20:293–299

    Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    CAS  PubMed  Google Scholar 

  • Dragunow M, Robertson HA (1987a) Generalized seizures induce c-fos protein(s) in mammalian neurons. Neurosci Lett 82:157–161

    CAS  PubMed  Google Scholar 

  • Dragunow M, Robertson HA (1987b) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329:441–442

    CAS  PubMed  Google Scholar 

  • Dragunow M, Robertson HA, Robertson GS (1988) Amygdala kindling and c-fos protein. Exp Neurol 102(2):261–263

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1972) New insights into the organization of the shark brain. Comp Biochem Physiol 42:121–129

    CAS  Google Scholar 

  • Ebbesson SOE (1980) On the organization of the telencephalon in elasmobranchs. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Springer, Boston, MA

    Google Scholar 

  • Ebbesson SOE, Heimer L (1970) Projections of the olfactory tract fibers in the nurse sharks (Ginglymostoma cirratum). Brain Res 17:47–55

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Schroeder DM (1971) Connections of the nurse shark’s telencephalon. Science 173:254–256

    CAS  PubMed  Google Scholar 

  • Eichenbaum H (2000) A cortical–hippocampal system for declarative memory. Nat Rev Neurosci 1(1):41

    CAS  PubMed  Google Scholar 

  • Ferreiro-Galve S, Carrera I, Candal E, Villar-Cheda B, Anadón R, Mazan S, Rodríguez-Moldes I (2008) The segmental organization of the developing shark brain based on neurochemical markers, with special attention to the prosencephalon. Brain Res Bull 75(2):236–240

    CAS  PubMed  Google Scholar 

  • Fiebig E, Bleckmann H (1989) Cell groups afferent to the telencephalon in a cartilaginous fish (Platyrhinoidis triseriata). A WGA-HRP study. Neurosci Lett 105:57–62

    CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130

    CAS  PubMed  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452(1–2):57–65

    CAS  PubMed  Google Scholar 

  • Fujikawa Y, Kozono K, Esaka M, Iijima N, Nagamatsu Y, Yoshida M, Uematsu K (2006) Molecular cloning and effect of c-fos mRNA on pharmacological stimuli in the goldfish brain. Comp Biochem Physiol D Genom Proteom 1(2):253–259

    Google Scholar 

  • Fuss T, Schluessel V (2015) Something worth remembering: visual discrimination in sharks. Anim Cogn 18(2):463–471

    PubMed  Google Scholar 

  • Fuss T, Bleckmann H, Schluessel V (2014a) The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation. J Comp Physiol A 200:19–35

    Google Scholar 

  • Fuss T, Bleckmann H, Schluessel V (2014b) Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus). J Comp Physiol A 200:37–52

    Google Scholar 

  • Fuss T, Bleckmann H, Schluessel V (2014c) Visual discrimination abilities in grey bamboo sharks (Chiloscyllium griseum). Zoology 117:104–111

    PubMed  Google Scholar 

  • Fuss T, Bleckmann H, Schluessel V (2014d) The brain creates illusions not just for us: turns out sharks (Chiloscyllium griseum) can ‘see the magic’ as well. Front Neural Circuits 8:24. https://doi.org/10.3389/fncir.2014.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Gashler AL, Swaminathan SOWMYA, Sukhatme VP (1993) A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 13(8), 4556–4571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glanzman DL (1995) The cellular basis of classical conditioning in Aplysia californica—it’s less simple than you think. Trends Neurosci 18(1):30–36

    CAS  PubMed  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory—a molecular framework. Nature 322(6078):419–422

    CAS  PubMed  Google Scholar 

  • Graeber RC, Ebbesson SO (1972) Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 42:131–139

    CAS  Google Scholar 

  • Graeber RC, Ebbesson SO, Jane JA (1978) Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum). J Comp Neurol 180:325–344

    CAS  PubMed  Google Scholar 

  • Graeber RC, Ebbesson SO, Jane JA (1973) Visual discrimination in sharks without optic tectum. Science 180(4084):413–415

    CAS  PubMed  Google Scholar 

  • Gruber SH (1967) A behavioral measurement of dark adaptation in the lemon shark, Negaprion brevirostris. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. Johns Hopkins Press, Baltimore, pp 479–790

    Google Scholar 

  • Guttridge TL, Brown C (2014) Learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Anim Cogn 17:415–425

    PubMed  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14):5089–5098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey-Girard E, Tweedle J, Ironstone J, Cuddy M, Ellis W, Maler L (2010) Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus. J Comp Neurol 518(14):2666–2692

    CAS  PubMed  Google Scholar 

  • Herrero L, Rodríguez F, Salas C, Torres B (1998) Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish. Exp Brain Res 120(3):291–305

    CAS  PubMed  Google Scholar 

  • Heurteaux C, Messier C, estrade C, Lazdunski M (1993) Memory processing and apamin induce immediate early gene expression in mouse brain. Mol Brain Res 3:17–22

    Google Scholar 

  • Hofmann MH, Northcutt RG (2012) Forebrain organization in elasmobranchs. Brain Behav Evolut 80(2):142–151

    Google Scholar 

  • Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178

    CAS  PubMed  Google Scholar 

  • Ito H, Vanegas H (1984) Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae). Brain Res 290(2):201–210

    CAS  PubMed  Google Scholar 

  • Jarvis ED, Ribeiro S, Da Silva ML, Ventura D, Vielliard J, Mello CV (2000) Behaviorally driven gene expression reveals song nuclei in humming- bird brain. Nature 406:628–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MW, Errington ML, French PJ, Fine A, Bliss TVP, Garel S, Charnay P, Bozon B, Laroche S, Davis S (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4(3):289–296

    CAS  PubMed  Google Scholar 

  • Jones EG, Peters A (eds) (2013) Comparative structure and evolution of cerebral cortex, vol 8. Springer Science & Business Media, Berlin, Heidelberg

    Google Scholar 

  • Kimber JA, Sims DW, Bellamy PH, Gill AB (2014) Elasmobranch cognitive ability: using electroreceptive foraging behaviour to demonstrate learning, habituation and memory in a benthic shark. Anim Cogn 17(1):55–65

    PubMed  Google Scholar 

  • Kinoshita M, Hosokawa T, Urano A, Ito E (2004) Long-term potentiation in the optic tectum of rainbow trout. Neurosci Lett 370(2–3):146–150

    CAS  PubMed  Google Scholar 

  • Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74(4):183–211

    CAS  PubMed  Google Scholar 

  • Koyano K, Kuba K, Minota S (1985) Long-term potentiation of transmitter release induced by repetitive presynaptic activities in bull-frog sympathetic ganglia. J Physiol 359(1):219–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krug M, Lössner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13(1):39–42

    CAS  PubMed  Google Scholar 

  • Lanahan A, Worley P (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem 70:37–43

    CAS  PubMed  Google Scholar 

  • Larson JR, Lynch G (1985) Long-term potentiation in lizard cerebral cortex. Soc Neurosci Abstr 11:777

    Google Scholar 

  • Lau BYB, Mathur P, Gould GG, Guo S (2011) Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc Natl Acad Sci USA 108(6):2581–2586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430(6998):456–459

    CAS  PubMed  Google Scholar 

  • Lewis D, Teyler TJ (1986) Anti-S-100 serum blocks long-term potentiation in the hippocampal slice. Brain Res 383(1–2):159–164

    CAS  PubMed  Google Scholar 

  • Luiten P (1981a) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections. J Comp Neurol 196:531–538

    CAS  PubMed  Google Scholar 

  • Luiten P (1981b) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo-telencephalic connections. J Comp Neurol 196:539–548

    CAS  PubMed  Google Scholar 

  • Mack K, Day M, Milbrandt J, Gottlieb DI (1990) Localization of the NGFI-A protein in the rat brain. Mol Brain Res 8(2):177–180

    CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16(12):521–527

    CAS  PubMed  Google Scholar 

  • Malkani S, Wallace KJ, Donley MP, Rosen JB (2004) An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learn Mem 11(5):617–624

    PubMed  PubMed Central  Google Scholar 

  • Manso M, Anadón R (1993) Golgi study of the telencephalon of the small-spotted dogfish Scyliorhinus canicula L. J Comp Neurol 333(4):485–502

    CAS  PubMed  Google Scholar 

  • Mansour-Robaey S, Pinganaud G (1996) Development of retino-tectal arborizations in the trout. Anat Embryol 194(3):279–287

    CAS  Google Scholar 

  • Maruska KP, Zhang A, Neboori A, Fernald RD (2013) Social opportunity causes rapid transcriptional changes in the social behaviour network of the brain in an African cichlid fish. J Neuroendocrinol 25(2):145–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matheny C, Day ML, Milbrandt J (1994) The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem 269(11):8176–8181

    CAS  PubMed  Google Scholar 

  • Matsuoka I, Fuyuki K, Shoji T, Kurihara K (1998) Identification of c-fos related genes and their induction by neural activation in rainbow trout brain. Biochim Biophys Acta 1395:220–227

    CAS  PubMed  Google Scholar 

  • Mayer U, Pecchia T, Bigman VP, Flore M, Vallortigara G (2015) Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: an immediate early gene study. Hippocampus 14:1–14

    Google Scholar 

  • Mello CV, Clayton DF (1994) Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J Neurosci 14:6652–6666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA 89:6818–6822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myrberg AA, Banner A, Richard JD (1969) Shark attraction using a video-acoustic system. Mar Biol 2:264–276

    Google Scholar 

  • Nam RH, Kim W, Lee CJ (2004) NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 370(2–3):248–251

    CAS  PubMed  Google Scholar 

  • Nguyen PV, Kandel ER (1996) A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci 16(10):3189–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290

    CAS  PubMed  Google Scholar 

  • Nikolaev E, Werka T, Kaczmarek L (1992) c-Fos protooncogene expression in rat brain after long-term training of two-way active avoidance reaction. Behav Brain Res 48:91–94

    CAS  PubMed  Google Scholar 

  • Nikonorov SI (1983) Electrophysiological analysis of convergent relations between the olfactory and visual analyzers in the forebrain of Squalus acanthias. J Evol Biochem Physiol 18:268–273

    Google Scholar 

  • Nikonorov SI, Lukyanov AS (1980) Electrophysiological investigations of visual afferent pathways in the forebrain of Squalus acanthias. J Evol Biochem Physiol 16:132–139

    Google Scholar 

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Integr Comp Biol 17(2):411–429

    Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 117–193

    Google Scholar 

  • Northcutt RG, Wathey JC (1979) Some connections of the skate dorsal and medial pallia. Neurosci Abstr 5:145

    Google Scholar 

  • Okuyama T, Suehiro Y, Imada H, Shimada A, Naruse K, Takeda H, Kubo T, Takeuchi H (2011) Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli. Biochem Biophys Res Commun 404(1):453–457

    CAS  PubMed  Google Scholar 

  • Otani S, Abraham WC (1989) Inhibition of protein synthesis in the dentate gyrus, but not the entorhinal cortex, blocks maintenance of long-term potentiation in rats. Neurosci Lett 106(1–2):175–180

    CAS  PubMed  Google Scholar 

  • Perry B (2002) Childhood experience and the expression of genetic potential: what childhood neglect tells us about nature and nurture. Brain Mind 3:79–100

    Google Scholar 

  • Poirier R, Cheval H, Mailhes C, Garel S, Charnay P, Davis S, Laroche S (2008) Distinct functions of egr gene family members in cognitive processes. Front Neurosci 2:2

    Google Scholar 

  • Quintana-Urzainqui I, Sueiro C, Carrera I, Ferreiro-Galve S, Santos-Durán G, Pose-Méndez S, Mazan S, Candal E, Rodríguez-Moldes I (2012) Contributions of developmental studies in the dogfish Scyliorhinus canicula to the brain anatomy of elasmobranchs: in-sights on the basal ganglia. Brain Behav Evol 80:127–141

    PubMed  Google Scholar 

  • Rajan KE, Ganesh A, Dharaneedharan S, Radhakrishnan K (2011) Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus. Fish Physiol Biochem 37(1):153–159

    PubMed  Google Scholar 

  • Renaudineau S, Poucet B, Laroche S, Davis S, Save E (2009) Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1. Proc Natl Sci 106(28):11771–11775

    CAS  Google Scholar 

  • Rodríguez-Moldes I (2009) A developmental approach to forebrain organization in elasmobranchs: new perspectives on the regionalization of the telencephalon. Brain Behav Evol 74:20–29

    PubMed  Google Scholar 

  • Rogan MT, Stäubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607

    CAS  PubMed  Google Scholar 

  • Rose S (1991) How chicks make memories: the cellular cascade from c-fos to dendritic remodelling. Trends Neurosci 14(9):390–397

    CAS  PubMed  Google Scholar 

  • Satou M, Anzai S, Huruno M (2005) Long-term potentiation and olfactory memory formation in the carp (Cyprinus carpio L.) olfactory bulb. J Comp Physiol A 191(5):421–434

    CAS  Google Scholar 

  • Schluessel V (2015) Who would have thought that ‘Jaws’ also has brains? Cognitive functions in elasmobranchs. Anim Cogn 18(1):19–37

    CAS  PubMed  Google Scholar 

  • Schluessel V, Bleckmann H (2012) Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum). Zool 115(6):346–353

    Google Scholar 

  • Schroeder D, Ebbesson SOE (1974) Nonolfactory telencephalic afferents in the nurse shark (Ginglymostoma cirratum). Brain Behav Evol 9:121–155

    CAS  PubMed  Google Scholar 

  • Schwarze S, Bleckmann H, Schluessel V (2013) Avoidance conditioning in bamboo sharks (Chiloscyllium griseum and C. punctatum): behavioral and neuroanatomical aspects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:843–856. https://doi.org/10.1007/s00359-013-0847-1

    Article  PubMed  Google Scholar 

  • Schwassmann HO (1968) Visual projection upon the optic tectum in foveate marine teleosts. Vis Res 8(10):1337-N2

    Google Scholar 

  • Schweitzer J (1983) The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornback ray, Platyrhinoidis triseriata. J Comp Physiol A 153:331–341

    Google Scholar 

  • Schweitzer J, Lowe D (1984) Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: evidence for two parallel electrosensory pathways. Neurosci Lett 44:317–322

    CAS  PubMed  Google Scholar 

  • Scott TRD, Bennett MR (1993) The effect of ions and second messengers on long-term potentiation of chemical transmission in avian ciliary ganglia. Br J Pharmacol 110(1):461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiflett MW, Tomaszycki ML, Rankin AZ, DeVoogd TJ (2004) Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behav Neurosci 118(1):121–130

    CAS  PubMed  Google Scholar 

  • Shors TJ, Matzel LD (1997) Long-term potentiation: what’s learning got to do with it? Behav Brain Sci 20(4):597–614

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ (ed) (1988) Physiology of elasmobranch fishes. Springer-Verlag, New York, USA

    Google Scholar 

  • Smeets W, Boord R (1985) Connections of the lobus inferior hypothalami of the clearnose skate Raja eglanteria (Chondrichthyes). J Comp Neurol 234:380–392

    CAS  PubMed  Google Scholar 

  • Smeets WJ, Northcutt RG (1987) At least one thalamotelencephalic pathway in cartilaginous fishes projects to the medial pallium. Neurosci Lett 78:277–282

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Springer, Berlin

    Google Scholar 

  • Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15(3):2445–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tischmeyer W, Kaczmarek L, Strauss M, Jork R, Matthies H (1990) Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav Neural Biol 54:165–171

    CAS  PubMed  Google Scholar 

  • Tokarev K, Tiunova A, Scharff C, Anokhin K (2011) Food for song: expression of C-Fos and ZENK in the zebra finch song nuclei during food aversion learning. PLoS One 6(6):e21157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van-Eyk SM, Siebeck UE, Champ CM, Marshall J, Hart NS (2011) Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 214:4186–4192

    PubMed  Google Scholar 

  • Vollmann H, Wölfel S, Ohneseit P, Stransky E, Vonthein R, Wick W et al (2007) Differential expression of egr1 and activation of microglia following irradiation in the rat brain. Strahlenther Onkol 183(5):248–255

    PubMed  Google Scholar 

  • Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas M, Horita H, Patterson MA, White SA, Sharff C, Haesler S, Zhao S, Sakaguchi H, Hagiwara M, Shiraki T, Horizane-Kishikawa T, Skene P, Hayashizali Y, Carninci P, Jarvis ED (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. PNAS 103(45):15212–15217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wai MS, Lorke DE, Webb SE, Yew DT (2005) The pattern of c-fos activation in the CNS is related to behavior in the mudskipper, Periophthalmus cantonensis. Behav Brain Res 167(2):318–327

    PubMed  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharm 463(1–3):199–216

    CAS  Google Scholar 

  • Walters ET, Byrne JH (1985) Long-term enhancement produced by activity-dependent modulation of Aplysia sensory neurons. J Neurosci 5(3):662–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CM, Hancock DC, Evan GI (1990) Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene 5(5):669–674

    CAS  PubMed  Google Scholar 

  • Wood L, Desjardins J, Fernald R (2011) Effects of stress and motivation on performing a spatial task. Neurobiol Learn Mem 95(3):277–285

    PubMed  Google Scholar 

  • Yang XD, Korn H, Faber DS (1990) Long-term potentiation of electrotonic coupling at mixed synapses. Nature 348(6301):542–545

    CAS  PubMed  Google Scholar 

  • Yopak KE (2012a) Neuroecology of cartilaginous fishes: the functional implications of brain scaling. J Fish Biol 80(5):1968–2023

    CAS  PubMed  Google Scholar 

  • Yopak KE (2012b) The nervous system of cartilaginous fishes. Brain Behav Evol 80:77–79

    PubMed  Google Scholar 

  • Zangenehpour S, Chaudhuri A (2002) Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps. Mol Brain Res 109:221–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. N. Krützfeldt and K. Stehr laboratory support and S. Braun for animal care taking and maintenance. We specifically thank C. Scharff and A. Nshdejan as well as T. Ruhl for help with the IEG protocols and procedures. We would also like to thank the anonymous reviewers for their expert comments, which helped to improve our manuscript. The research reported herein was performed under the guidelines established by the current German animal protection law and had been approved by the Landesamt für Natur, Umwelt und Verbraucherschutz NRW (Approval number 8.87-50.10.37.09.198). Funding was provided by a grant of the Deutsche Forschungsgemeinschaft (DFG) to Dr. Vera Schluessel (Grant number SCHL 1919/4-1).

Funding

Funding was provided by a grant of the Deutsche Forschungsgemeinschaft (DFG) to Dr. Vera Schluessel (Grant number SCHL 1919/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Fuss.

Ethics declarations

Conflict of interest

Dr. Theodora Fuss declares that she has no conflict of interest. Dr. Vera Schluessel declares that she has no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors. There were no experiments involving humans or human material. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The research reported on bamboo sharks was performed under the guidelines established by the current German animal protection law and had been approved by the Landesamt für Natur, Umwelt und Verbraucherschutz NRW (Approval number 8.87-50.10.37.09.198).

Informed consent

This article does not contain any studies with human participants performed by any of the authors. There were no experiments involving humans or human material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuss, T., Schluessel, V. Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum). Brain Struct Funct 223, 3975–4003 (2018). https://doi.org/10.1007/s00429-018-1728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1728-8

Keywords

Navigation