Skip to main content
Log in

Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are Zn2+-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3−/−) mice. Golgi–Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3−/− mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3−/− mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3−/− mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts J, Nys J, Arckens L (2014) A highly reproducible and straightforward method to perform in vivo monocular enucleation in the mouse. J Vis Exp (in press)

  • Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254. doi:10.1016/j.jneumeth.2008.05.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, Vandesande F (1995) Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat 8:117–124

    Article  CAS  PubMed  Google Scholar 

  • Arckens L, Van der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544

    Article  CAS  PubMed  Google Scholar 

  • Barry DM, Millecamps S, Julien J-P, Garcia ML (2007) New movements in neurofilament transport, turnover and disease. Exp Cell Res 313:2110–2120. doi:10.1016/j.yexcr.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  • Bartoletti A, Cancedda L, Reid SW, Tessarollo L, Porciatti V, Pizzorusso T, Maffei L (2002) Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation. J Neurosci 22:10072–10077

    CAS  PubMed  Google Scholar 

  • Bilousova TV, Rusakov DA, Ethell DW, Ethell IM (2006) Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 97:44–56. doi:10.1111/j.1471-4159.2006.03701.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2008) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102. doi:10.1136/jmg.2008.061796

    Article  PubMed  Google Scholar 

  • Birdal T (2011) Smoothing 2D contours using local regression lines. MATLAB central file exchange

  • Bonhoeffer T (1996) Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6:119–126

    Article  CAS  PubMed  Google Scholar 

  • Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new “Intracellular” substrates revealed by degradomics. Biochemistry 48:10830–10845. doi:10.1021/bi901656f

    Article  CAS  PubMed  Google Scholar 

  • Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423. doi:10.3109/10409238.2010.501783

    Article  CAS  PubMed  Google Scholar 

  • Cnops L, Hu T–T, Vanden Broeck J, Burnat K, Van den Bergh G, Arckens L (2007) Age- and experience-dependent expression of Dynamin I and Synaptotagmin I in cat visual system. J Comp Neurol 504:254–264. doi:10.1002/cne.21415

    Article  CAS  PubMed  Google Scholar 

  • Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST (2010) Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neurosci 166:508–521. doi:10.1016/j.neuroscience.2009.12.061

    Article  CAS  Google Scholar 

  • D’Errico J (2012) Interparc. MATLAB central file exchange

  • Dale JM, Garcia ML (2012) Neurofilament phosphorylation during development and disease: which came first, the phosphorylation or the accumulation? J Amino Acids 2012:1–10. doi:10.1007/s00401-011-0848-5

    Article  Google Scholar 

  • Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, Smith SJ, Shatz CJ (2009) Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463–470. doi:10.1016/j.neuron.2009.10.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases*. Annu Rev Neurosci 31:151–173. doi:10.1146/annurev.neuro.31.061307.090711

    Article  PubMed  Google Scholar 

  • Desai NS, Cudmore RH, Nelson SB, Turrigiano GG (2002) Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci 5:783–789. doi:10.1038/nn878

    CAS  PubMed  Google Scholar 

  • Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11:735–746. doi:10.1038/nrn2898

    Article  CAS  PubMed  Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. doi:10.1146/annurev.neuro.27.070203.144152

    Article  CAS  PubMed  Google Scholar 

  • Dziembowska M, Wlodarczyk J (2012) MMP9: a novel function in synaptic plasticity. Int J Biochem Cell Biol 44:709–713. doi:10.1016/j.biocel.2012.01.023

    Article  CAS  PubMed  Google Scholar 

  • Esparza J, Kruse M, Lee J, Michaud M, Madri JA (2004) MMP-2 null mice exhibit an early onset and severe experimental autoimmune encephalomyelitis due to an increase in MMP-9 expression and activity. FASEB J 18:1682–1691. doi:10.1096/fj.04-2445com

    Article  CAS  PubMed  Google Scholar 

  • Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85:2813–2823. doi:10.1002/jnr.21273

    Article  CAS  PubMed  Google Scholar 

  • Faguet J, Maranhao B, Smith SL, Trachtenberg JT (2008) Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity. J Neurophysiol 101:855–861. doi:10.1152/jn.90893.2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Fenstermaker V, Chen Y, Ghosh A, Yuste R (2004) Regulation of dendritic length and branching by semaphorin 3A. J Neurobiol 58:403–412. doi:10.1002/neu.10304

    Article  CAS  PubMed  Google Scholar 

  • Fowlkes JL (2003) Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes. Endocrinology 145:620–626. doi:10.1210/en.2003-0636

    Article  PubMed  Google Scholar 

  • Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923. doi:10.1016/j.neuron.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  • Fujioka H, Dairyo Y, Yasunaga K-I, Emoto K (2012) Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and DISEASE. Biochem Res Int 2012:1–8. doi:10.1016/j.neuron.2010.06.021

    Article  Google Scholar 

  • Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 57:774–777

    CAS  PubMed  Google Scholar 

  • Gonthier B, Nasarre C, Roth L, Perraut M, Thomasset N, Roussel G, Aunis D, Bagnard D (2006) Functional interaction between matrix metalloproteinase-3 and semaphorin-3C during cortical axonal growth and guidance. Cereb Cortex 17:1712–1721. doi:10.1093/cercor/bhl082

    Article  PubMed  Google Scholar 

  • Gonthier B, Koncina E, Satkauskas S, Perraut M, Roussel G, Aunis D, Kapfhammer JP, Bagnard D (2009) A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS One 4:e5099. doi:10.1371/journal.pone.0005099.s001

    Article  PubMed Central  PubMed  Google Scholar 

  • Heimel JA, Hermans JM, Sommeijer JP, Neuro-Bsik Mouse Phenomics consortium, Levelt CN (2008) Genetic control of experience-dependent plasticity in the visual cortex. Genes Brain Behav 7:915–923. doi:10.1111/j.1601-183X.2008.00431.x

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888. doi:10.1038/nrn1787

    Article  CAS  PubMed  Google Scholar 

  • Hinkle CL, Diestel S, Lieberman J, Maness PF (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66:1378–1395. doi:10.1002/neu.20257

    Article  CAS  PubMed  Google Scholar 

  • Hu T-T, Van den Bergh G, Thorrez L, Heylen K, Eysel UT, Arckens L (2011) Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone. Cereb Cortex 21:2883–2892. doi:10.1093/cercor/bhr079

    Article  PubMed  Google Scholar 

  • Huntley GW (2012) Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13:743–757. doi:10.1038/nrn3320

    Article  CAS  PubMed  Google Scholar 

  • Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, Crisostomo RA, Larsen BP, Mehta A, Alcantara CJ, Patel B, Swain RA, Weiler IJ, Oostra BA, Greenough WT (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111:140–146. doi:10.1002/ajmg.10500

    Article  PubMed  Google Scholar 

  • Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828. doi:10.1016/j.neuron.2011.12.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jan Y-N, Jan LY (2003) The control of dendrite development. Neuron 40:229–242

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA, Leterrier J-F, Herrmann H (2003) Assembly and structure of neurofilaments. Curr Opin Colloid Int 8:40–47. doi:10.1016/S1359-0294(03)00010-4

    Article  CAS  Google Scholar 

  • Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC (2011) Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 31:e35–e44. doi:10.1161/ATVBAHA.111.225623

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23:237–256

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680. doi:10.1016/j.neuron.2008.04.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanold PO, Kim YA, GrandPre T, Shatz CJ (2009) Co-regulation of ocular dominance plasticity and NMDA receptor subunit expression in glutamic acid decarboxylase-65 knock-out mice. J Physiol 587:2857–2867. doi:10.1113/jphysiol.2009.171215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Chang R, Teunissen C, Gebremichael Y, Petzold A (2011) Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure. J Neurol Sci 307:132–138. doi:10.1016/j.jns.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Tung VW-Y, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140:1167–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konopacki FA, Rylski M, Wilczek E, Amborska R, Detka D, Kaczmarek L, Wilczynski GM (2007) Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA. Neurosci 150:31–39. doi:10.1016/j.neuroscience.2007.08.026

    Article  CAS  Google Scholar 

  • Kovalchuk Y (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734. doi:10.1126/science.1067766

    Article  CAS  PubMed  Google Scholar 

  • Lariviere RC, Julien J-P (2003) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148. doi:10.1002/neu.10270

    Article  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057

    Article  CAS  PubMed  Google Scholar 

  • Lodovichi C, Berardi N, Pizzorusso T, Maffei L (2000) Effects of neurotrophins on cortical plasticity: same or different? J Neurosci 20:2155–2165

    CAS  PubMed  Google Scholar 

  • Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T (1992) Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci 12:4651–4662

    CAS  PubMed  Google Scholar 

  • Mannello F, Medda V (2012) Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 47:27–58. doi:10.1016/j.proghi.2011.12.002

    Article  PubMed  Google Scholar 

  • Maya-Vetencourt JF, Baroncelli L, Viegi A, Tiraboschi E, Castren E, Cattaneo A, Maffei L (2012) IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels. Neural Plast 2012:1–10. doi:10.1038/nn1860

    Google Scholar 

  • McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  CAS  PubMed  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  CAS  PubMed  Google Scholar 

  • McFarlane S (2003) Metalloproteases: carving out a role in axon guidance. Neuron 37:559–562

    Article  CAS  PubMed  Google Scholar 

  • Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 96:1227–1241. doi:10.1111/j.1471-4159.2005.03565.x

    Article  CAS  PubMed  Google Scholar 

  • Michaluk P, Mikasova L, Groc L, Frischknecht R, Choquet D, Kaczmarek L (2009) Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin 1 signaling. J Neurosci 29:6007–6012. doi:10.1523/JNEUROSCI.5346-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M, Zuschratter W, Muller D, Wilczynski GM, Mozrzymas JW, Stewart MG, Kaczmarek L, Wlodarczyk J (2011) Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci 124:3369–3380. doi:10.1242/jcs.090852

    Article  CAS  PubMed  Google Scholar 

  • Milward EA, Fitzsimmons C, Szklarczyk A, Conant K (2007) The matrix metalloproteinases and CNS plasticity: an overview. J Neuroimmunol 187:9–19. doi:10.1016/j.jneuroim.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  • Moresco EMY (2005) Integrin-mediated dendrite branch maintenance requires abelson (Abl) family kinases. J Neurosci 25:6105–6118. doi:10.1523/JNEUROSCI.1432-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M (2007) Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:961–972. doi:10.1016/j.neuron.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  • Murphy G, Stanton H, Cowell S, Butler G, Knäuper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS 107:38–44

    Article  CAS  PubMed  Google Scholar 

  • Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934. doi:10.1523/JNEUROSCI.4359-05.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng T, Ryu JR, Sohn JH, Tan T, Song H, Ming G-L, Goh ELK (2013) Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway. PLoS One 8:e65572. doi:10.1371/journal.pone.0065572.s003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20:4165–4176

    CAS  PubMed  Google Scholar 

  • Nordstrom LA, Lochner J, Yeung W, Ciment G (1995) The metalloproteinase stromelysin-1 (transin) mediates PC12 cell growth cone invasiveness through basal laminae. Mol Cell Neurosci 6:56–68

    Article  CAS  PubMed  Google Scholar 

  • Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L (2014) The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 522:950–970. doi:10.1002/cne.23455

    Article  PubMed  Google Scholar 

  • Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267:3581–3584

    CAS  PubMed  Google Scholar 

  • Oliveira-Silva P, Jurgilas PB, Trindade P, Campello-Costa P, Perales J, Savino W, Serfaty CA (2007) Matrix metalloproteinase-9 is involved in the development and plasticity of retinotectal projections in rats. Neuroimmunomodulation 14:144–149

    Article  CAS  PubMed  Google Scholar 

  • Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239. doi:10.1038/nrc1821

    Article  CAS  PubMed  Google Scholar 

  • Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456. doi:10.1002/cne.903080310

    Article  CAS  PubMed  Google Scholar 

  • Paulussen M, Jacobs S, Gucht E, Hof PR, Arckens L (2011) Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit. Brain Struct Funct 216:183–199. doi:10.1007/s00429-011-0311-3

    Article  PubMed  Google Scholar 

  • Penn AA, Shatz CJ (1999) Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr Res 45:447–458. doi:10.1203/00006450-199904010-00001

    Article  CAS  PubMed  Google Scholar 

  • Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985. doi:10.1016/S0896-6273(03)00323-4

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Tanzil G, de Souza P, Merker HJ, Shakibaei M (2001) Co-localization of integrins and matrix metalloproteinases in the extracellular matrix of chondrocyte cultures. Histol Histopathol 16:1081

    CAS  PubMed  Google Scholar 

  • Solé S, Petegnief V, Gorina R, Chamorro A, Planas AM (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63:338–349

    PubMed  Google Scholar 

  • Spolidoro M, Sale A, Berardi N, Maffei L (2008) Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192:335–341. doi:10.1007/s00221-008-1509-3

    Article  PubMed  Google Scholar 

  • Spolidoro M, Putignano E, Munafo C, Maffei L, Pizzorusso T (2012) Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Cereb Cortex 22:725–734. doi:10.1093/cercor/bhr158

    Article  CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221. doi:10.1038/nrn2286

    Article  CAS  PubMed  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szaro BG, Strong MJ (2010) Post-transcriptional control of neurofilaments: new roles in development, regeneration and neurodegenerative disease. Trends Neurosci 33:27–37. doi:10.1016/j.tins.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930

    CAS  PubMed  Google Scholar 

  • Van Brussel L, Gerits A, Arckens L (2009) Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol 514:107–116. doi:10.1002/cne.21994

    Article  PubMed  Google Scholar 

  • Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146. doi:10.1093/cercor/bhq286

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819. doi:10.1093/cercor/bhm012

    Article  PubMed  Google Scholar 

  • Van Hove I, Verslegers M, Buyens T, Delorme N, Lemmens K, Stroobants S, Gantois I, D’Hooge R, Moons L (2011) An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. Mol Neurobiol 45:17–29. doi:10.1007/s12035-011-8215-z

    Article  PubMed  Google Scholar 

  • Vicente-Manzanares M, Hodges J, Horwitz AR (2009) Dendritic spines: similarities with protrusions and adhesions in migrating cells. Open Neurosci J 3:87–96. doi:10.2174/1874082000903020087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X-B, Bozdagi O, Nikitczuk JS, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci 105:19520–19525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiera G, Wójtowicz T, Lebida K, Piotrowska A, Drulis-Fajdasz D, Gomułkiewicz A, Gendosz D, Podhorska-Okołów M, Capogna M, Wilczyński G, Dzięgiel P, Kaczmarek L, Mozrzymas JW (2012) Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber—CA3 pathway. Mol Cell Neurosci 50:147–159. doi:10.1016/j.mcn.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  • Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP, Swinnen SP, Wenderoth N, Arckens L, D’Hooge R (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci USA 110:3131–3136. doi:10.1073/pnas.1217832110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci 88:5106–5110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright JW, Meighan PC, Brown TE, Wiediger RV, Sorg BA, Harding JW (2009) Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3. Behav Brain Res 203:27–34. doi:10.1016/j.bbr.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  • Yasunaga K-I, Kanamori T, Morikawa R, Suzuki E, Emoto K (2010) Dendrite reshaping of adult drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev Cell 18:621–632. doi:10.1016/j.devcel.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  • Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931–944. doi:10.1038/nrn1807

    Article  CAS  PubMed  Google Scholar 

  • Zangenehpour S, Chaudhuri A (2002) Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps. Mol Brain Res 109:221–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Ria Vanlaer and Lieve Geenen for excellent technical assistance. Jeroen Aerts is supported by a Ph.D. fellowship of the Agency for Innovation through Science and Technology Flanders (IWT Vlaanderen). This work is supported by the Fund for Scientific Research-Flanders (FWO Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutgarde Arckens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, J., Nys, J., Moons, L. et al. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice. Brain Struct Funct 220, 2675–2689 (2015). https://doi.org/10.1007/s00429-014-0819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0819-4

Keywords

Navigation