Skip to main content
Log in

Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Dendritic spines are small protrusions that serve as the principal recipients of excitatory inputs onto cortical pyramidal cells. Alterations in spine and filopodia density and morphology correlate with both developmental maturity and changes in synaptic strength. In order to better understand the developmental profile of dendritic protrusion (dendritic spines + filopodia) morphology and density over the animal’s first postnatal year, we used the Golgi staining technique to label neurons and their dendritic protrusions in mice. We focused on quantifying the density per length of dendrite and categorizing the morphology of dendritic protrusions of layer VI pyramidal neurons residing in barrel cortex using the computer assisted reconstruction program Neurolucida. We classified dendritic protrusion densities at seven developmental time points: postnatal day (PND) 15, 30, 60, 90, 180, 270, and 360. Our findings suggest that the dendritic protrusions in layer VI barrel cortex pyramidal neurons are not static, and their density as well as relative morphological distribution change over time. We observed a significant increase in mushroom spines and a decrease in filopodia as the animals matured. Further analyses show that as the animal mature there was a reduction in pyramidal cell dendritic lengths overall, as well as a decrease in overall protrusion densities. The ratio of apical to basilar density decreased as well. Characterizing the profile of cortical layer VI dendritic protrusions within the first postnatal year will enable us to better understand the relationship between the overall developmental maturation profile and dendritic spine functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters membrane potentials. Proc Natl Acad Sci USA 103(47):17961–17966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143

    Article  PubMed Central  PubMed  Google Scholar 

  • Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J (2012) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex. doi:10.1093/cercor/bhs154

    PubMed Central  Google Scholar 

  • Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386

    Google Scholar 

  • Brumberg JC, Hamzei-Sichani F, Yuste R (2003) Morphological and physiological characterization of layer VI corticofugal neurons of mouse primary visual cortex. J Neurophysiol 89:2854–2867

    Article  PubMed  Google Scholar 

  • Chen CC, Abrams S, Pinhas A, Brumberg JC (2009) Morphological heterogeneity of layer VI neurons in mouse barrel cortex. J Comp Neurol 512:726–746

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen CC, Tam D, Brumberg JC (2012a) Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex. Brain Struct Funct 217(2):435–446. doi:10.1007/s00429-011-0342-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen CC, Lu HC, Brumberg JC (2012b) mGluR5 knockout mice display increased dendritic spine densities. Neurosci Lett. E-pub. PMID: 22819970

  • Dickstein DL, Weaver CM, Luebke JI, Hof PR (2012) Dendritic spine changes associated with normal aging. Neuroscience. doi:10.1016/j.neuroscience.2012.09.077

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961

    Article  PubMed  Google Scholar 

  • Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Oga T, Okamoto T, Fujita I (2010) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20:1398–1408

    Article  PubMed  Google Scholar 

  • Feldman ML, Dowd C (1975) Loss of dendritic spines in aged cerebral cortex. Anat Embryol 148:279–301

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Harris KM (1999) Dendrite structure. In: Stuart G, Spruston N, Häusser M (eds) Dendrites. Oxford University Press, Oxford, pp 1–35

    Google Scholar 

  • Garrett JE, Wellman CL (2009) Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162(1):195–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, Morrison JH (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104:11465–11470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Psychol 17:341–371

    CAS  Google Scholar 

  • Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  • Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680

    Article  CAS  PubMed  Google Scholar 

  • Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19:2248–2268

    Article  PubMed Central  PubMed  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Hamaguchi T, Murakami F, Tsukahara N (1984) Quantitative analysis of electrical properties of dendritic spines. Biol Cybern 50(6):447–454

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422

    CAS  PubMed  Google Scholar 

  • Koch C, Zador A, Brown TH (1992) Dendritic spines: convergence of theory and experiment. Science 256:973–974

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54(3):311–325

    Article  PubMed  Google Scholar 

  • Konur S, Rabinowitz D, Fenstermaker V, Yuste R (2003) Systematic regulation of spine head diameters and densities in pyramidal neurons from juvenile mice. J Neurobiol 56:95–112

    Article  PubMed  Google Scholar 

  • Lee KF, Soares C, Béïque JC (2012) Examining form and function of dendritic spines. Neural Plast. 2012:704103. doi:10.1155/2012/704103

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881

    Article  CAS  PubMed  Google Scholar 

  • Leuner B, Shors TJ (2012) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience. doi:10.1016/j.neuroscience.2012.04.021

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  Google Scholar 

  • McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  CAS  PubMed  Google Scholar 

  • Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. PNAS 106(7):2423–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mostany R, Anstey JE, Crump KL, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33(9):4094–4104

    Article  CAS  PubMed  Google Scholar 

  • Pannese E (2011) Morphological changes in nerve cells during normal aging. Brain Struct Funct 216:85–89

    Article  PubMed  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex: the perikaryon, dendrites and spines. Am J Anat 127:321–355

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33(10):2357–2372

    Article  PubMed Central  PubMed  Google Scholar 

  • Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67:735–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson RJ, Blundon JA, Bayazitov IT, Zakharenko SS (2009) Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J Neurosci 29(20):6406–6417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13(8):699–708. doi:10.1038/embor.2012.102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruan YI, Zhigang L, Fan Y, Zou B, Xu ZC (2009) Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia. J Neurosci Res 87:61–68

    Article  CAS  PubMed  Google Scholar 

  • Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115

    Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21(16):6292–6297

    CAS  PubMed  Google Scholar 

  • Shors TJ, Falduto J, Leuner B (2004) The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur J Neurosci 19(1):145–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624

    Article  CAS  PubMed  Google Scholar 

  • Teskey GC, Hutchinson JE, Kolb B (1999) Sex differences in cortical plasticity and behavior following anterior cortical kindling in rats. Cereb Cortex 9(7):675–682

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:1

    Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (1998) Golgi atlas of the postnatal mouse. Springer, Austria

    Book  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205–242

    Article  CAS  PubMed  Google Scholar 

  • Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924

    Article  CAS  PubMed  Google Scholar 

  • Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H (2008) Principles of long-term dynamics of dendritic spines. J Neurosci 28:13592–13608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Yang G, Kwon E, Gan WB (2005a) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261–265

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Lin A, Chang P, Gan WB (2005b) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a DSC award to C-C Chen and PSC-CUNY 62750-00 40 and NS058758 to J.C.B. We thank Dr. Carolyn Pytte and Dr. Stephan F. Brumberg for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua C. Brumberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orner, D.A., Chen, CC., Orner, D.E. et al. Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex. Brain Struct Funct 219, 1709–1720 (2014). https://doi.org/10.1007/s00429-013-0596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0596-5

Keywords

Navigation