Skip to main content

Advertisement

Log in

Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29 %) in the aPir contacted 2–4 postsynaptic dendrites, only 7 % of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95 %) contacted dendritic spines, whereas most identified boutons in the MeA (64 %) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOB:

Accessory olfactory bulb

aPir:

Anterior pirifrom cortex

GL:

Glomerular layer

Glut:

Glutamate

HRP:

Horseradish peroxidase

LDCV:

Large dense core vesicle

Lot:

Lateral olfactory tract

MeA:

Medial amygdala

MeApd:

Posterodorsal part of the medial amygdala

MeApv:

Posteroventral part of the medial amygdala

MOB:

Main olfactory bulb

Opt:

Optic tract

References

  • Alvarez FJ, Kavookjian AM, Light AR (1992) Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 12:2901–2917

    CAS  PubMed  Google Scholar 

  • Alvarez FJ, Kavookjian AM, Light AR (1993) Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord. J Comp Neurol 329:472–490

    Article  CAS  PubMed  Google Scholar 

  • Bae YC, Yoshida A (2011) Ultrastructural basis for craniofacial sensory processing in the brainstem. Int Rev Neurobiol 97:99–141

    Article  CAS  PubMed  Google Scholar 

  • Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, Zhang LF, Honma S, Fukami H, Yoshida A, Ottersen OP, Shigenaga Y (2002) Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat. J Comp Neurol 442:308–319

    Article  PubMed  Google Scholar 

  • Bae YC, Paik SK, Park KP, Ma SK, Jin JG, Ahn DK, Kim SK, Moritani M, Yoshida A (2004) Quantitative analysis of tooth pulp afferent terminals in the rat brain stem. NeuroReport 15:2485–2489

    Article  PubMed  Google Scholar 

  • Bae YC, Ahn HJ, Park KP, Kim HN, Paik SK, Bae JY, Lee HW, Kim KH, Yoshida A, Moritani M, Shigenaga Y (2005) The synaptic microcircuitry associated with primary afferent terminals in the interpolaris and caudalis of trigeminal sensory nuclear complex. Brain Res 1060:118–125

    Article  CAS  PubMed  Google Scholar 

  • Barnes DC, Hofacer RD, Zaman AR, Rennaker RL, Wilson DA (2008) Olfactory perceptual stability and discrimination. Nat Neurosci 11:1378–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belluscio L, Koentges G, Axel R, Dulac C (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97:209–220

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Yanagawa Y, Chen WR, Luo M (2008) Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. J Neurophysiol 99:77–86

    Article  PubMed  Google Scholar 

  • Broman J, Anderson S, Ottersen OP (1993) Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 5:1050–1061

    Article  CAS  PubMed  Google Scholar 

  • Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci USA 93:8040–8045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bupesh M, Legaz I, Abellán A, Medina L (2011) Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 519:1505–1525

    Article  PubMed  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    Article  CAS  PubMed  Google Scholar 

  • Choi GB, Dong HW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Swanson LW, Anderson DJ (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Buckley KS (1989) Antagonism of monosynaptic excitations in the mouse olfactory cortex slice by 6,7-dinitroquinoxaline-2,3-dione. Neuropharmacology 28:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Anson J, Probett GA (1981) Patterns of endogenous amino acid release from slices of rat and guinea-pig olfactory cortex. Brain Res 204:103–120

    Article  CAS  PubMed  Google Scholar 

  • Datiche F, Cattarelli M (1996) Reciprocal and topographic connections between the piriform and prefrontal cortices in the rat: a tracing study using the B subunit of the cholera toxin. Brain Res Bull 41:391–398

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Wagner S (2006) Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 40:449–467

    Article  CAS  PubMed  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233

    Article  CAS  PubMed  Google Scholar 

  • Franks KM, Isaacson JS (2006) Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49:357–363

    Article  CAS  PubMed  Google Scholar 

  • Fuller TA, Price JL (1988) Putative glutamatergic and/or aspartatergic cells in the main and accessory olfactory bulbs of the rat. J Comp Neurol 276:209–218

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB (1983) Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods. J Comp Neurol 213:163–187

    Article  CAS  PubMed  Google Scholar 

  • Haberly L, Behan M (1983) Structure of the piriform cortex of the opossum. III. Ultrastructural characterization of synaptic terminals of association and olfactory bulb afferent fibers. J Comp Neurol 219:448–460

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Stevens JK (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    CAS  PubMed  Google Scholar 

  • Herrera AA, Grinnell AD, Wolowske B (1985) Ultrastructural correlates of naturally occurring differences in transmitter release efficacy in frog motor nerve terminals. J Neurocytol 14:193–202

    Article  CAS  PubMed  Google Scholar 

  • Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H, Chen WR, Mori K (2012) Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 32:7970–7985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imaki T, Nahon JL, Sawchenko PE, Vale W (1989) Widespread expression of corticotropin-releasing factor messenger RNA and immunoreactivity in the rat olfactory bulb. Brain Res 496:35–44

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Larson J, Lynch G (1990) Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex. Exp Brain Res 82:451–455

    Article  CAS  PubMed  Google Scholar 

  • Kasowski HJ, Kim H, Greer CA (1999) Compartmental organization of the olfactory bulb glomerulus. J Comp Neurol 407:261–274

    Article  CAS  PubMed  Google Scholar 

  • Knafo S, Grossman Y, Barkai E, Benshalom G (2001) Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur J Neurosci 13:633–638

    Article  CAS  PubMed  Google Scholar 

  • Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273

    Article  CAS  PubMed  Google Scholar 

  • Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 186:443–465

    Article  CAS  Google Scholar 

  • Kopec CD, Li B, Wei W, Boehm J, Malinow R (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26:2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Martínez-García F, Martínez-Ricós J, Agustín-Pavón C, Martínez-Hernández J, Novejarque A, Lanuza E (2009) Refining the dual olfactory hypothesis: pheromone reward and odour experience. Behav Brain Res 200:277–286

    Article  PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21

    Article  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  • Moncho-Bogani J, Lanuza E, Hernández A, Novejarque A, Martínez-García F (2002) Attractive properties of sexual pheromones in mice: innate or learned? Physiol Behav 77:167–176

    Article  CAS  PubMed  Google Scholar 

  • Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4:120

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakagawa S, Kurata S, Yoshida A, Nagase Y, Moritani M, Takemura M, Bae YC, Shigenaga Y (1997) Ultrastructural observations of synaptic connections of vibrissa afferent terminals in cat principal sensory nucleus and morphometry of related synaptic elements. J Comp Neurol 389:12–33

    Article  CAS  PubMed  Google Scholar 

  • Nissant A, Pallotto M (2011) Integration and maturation of newborn neurons in the adult olfactory bulb–from synapses to function. Eur J Neurosci 33:1069–1077

    Article  PubMed  Google Scholar 

  • Noback CR, Shriver JE (1969) Encephalization and the lemniscal systems during phylogeny. Ann N Y Acad Sci 167:118–128

    Article  Google Scholar 

  • Ottersen OP (1987) Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing. Exp Brain Res 69:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Madsen S, Skumlien S, Strømhaug J (1986) Evaluation of the immunocytochemical method for amino acids. Med Biol 64:147–158

    CAS  PubMed  Google Scholar 

  • Paik SK, Bae JY, Park SE, Moritani M, Yoshida A, Yeo EJ, Choi KS, Ahn DK, Moon C, Shigenaga Y, Bae YC (2007) Developmental changes in distribution of gamma-aminobutyric acid- and glycine-immunoreactive boutons on rat trigeminal motoneurons I. Jaw-closing motoneurons. J Comp Neurol 503:779–789

    Article  CAS  PubMed  Google Scholar 

  • Paik SK, Kwak MK, Bae JY, Yi HW, Yoshida A, Ahn DK, Bae YC (2012) γ-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development. J Comp Neurol 520:3414–3427

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E (2012) Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 6:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic, San Diego

    Google Scholar 

  • Pierce JP, Mendell LM (1993) Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships. J Neurosci 13:4748–4763

    CAS  PubMed  Google Scholar 

  • Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    Article  CAS  PubMed  Google Scholar 

  • Propst JW, Ko CP (1987) Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J Neurosci 7:3654–3664

    CAS  PubMed  Google Scholar 

  • Ralston HJ 3rd, Ralston DD (1994) Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic study of differing GABAergic circuitry serving thalamic somatosensory mechanisms. J Neurosci 14:2485–2502

    PubMed  Google Scholar 

  • Rasia-Filho AA, Londero RG, Achaval M (1999) Effects of gonadal hormones on the morphology of neurons from the medial amygdaloid nucleus of rats. Brain Res Bull 48:173–183

    Article  CAS  PubMed  Google Scholar 

  • Ray JP, Price JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323:167–197

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208

    Article  CAS  PubMed  Google Scholar 

  • Salazar I, Brennan PA (2001) Retrograde labelling of mitral/tufted cells in the mouse accessory olfactory bulb following local injections of the lipophilic tracer DiI into the vomeronasal amygdala. Brain Res 896:198–203

    Article  CAS  PubMed  Google Scholar 

  • Schoppa NE, Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga Y, Moritani M, Oh SJ, Park KP, Paik SK, Bae JY, Kim HN, Ma SK, Park CW, Yoshida A, Ottersen OP, Bae YC (2005) The distribution of inhibitory and excitatory synapses on single, reconstructed jaw-opening motoneurons in the cat. Neuroscience 133:507–518

    Article  CAS  PubMed  Google Scholar 

  • Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176

    Article  CAS  PubMed  Google Scholar 

  • Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bekkers JM (2006) Neural coding by two classes of principal cells in the mouse piriform cortex. J Neurosci 26:11938–11947

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bekkers JM (2010) Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex 20:2971–2984

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Bekkers JM (2011) Two layers of synaptic processing by principal neurons in piriform cortex. J Neurosci 31:2156–2166

    Article  CAS  PubMed  Google Scholar 

  • von Campenhausen H, Mori K (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur J Neurosci 12:33–46

    Article  Google Scholar 

  • Warden MK, Young WS 3rd (1988) Distribution of cells containing mRNAs encoding substance P and neurokinin B in the rat central nervous system. J Comp Neurol 272:90–113

    Article  CAS  PubMed  Google Scholar 

  • Watson AH, Hughes DI, Bazzaz AA (2002) Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat. J Comp Neurol 452:367–380

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RJ, van Eyck SL (1991) A tetramethylbenzidine/tungstate reaction for horseradish peroxidase histochemistry. J Histochem Cytochem 39:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Wilson DA, Kadohisa M, Fletcher ML (2006) Cortical contributions to olfaction: plasticity and perception. Semin Cell Dev Biol 17:462–470

    Article  PubMed  Google Scholar 

  • Yabuta NH, Yasuda K, Nagase Y, Yoshida A, Fukunishi Y, Shigenaga Y (1996) Light microscopic observations of the contacts made between two spindle afferent types and alpha-motoneurons in the cat trigeminal motor nucleus. J Comp Neurol 374:436–450

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Fukami H, Nagase Y, Appenteng K, Honma S, Zhang LF, Bae YC, Shigenaga Y (2001) Quantitative analysis of synaptic contacts made between functionally identified oralis neurons and trigeminal motoneurons in cats. J Neurosci 21:6298–6307

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0009328). The authors sincerely thank Dr. Juli Valtschanoff for his helpful discussion and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheil Moon or Yong Chul Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.K., Kim, J.H., Yang, E.S. et al. Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala. Brain Struct Funct 219, 1603–1613 (2014). https://doi.org/10.1007/s00429-013-0588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0588-5

Keywords

Navigation