Skip to main content
Log in

Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Determining the normal developmental trajectory of individual GABAergic components in the prefrontal cortex (PFC) during the adolescent transition period is critical because local GABAergic interneurons are thought to play an important role in the functional maturation of cognitive control that occurs in this developmental window. Based on the expression of calcium-binding proteins, three distinctive subtypes of interneurons have been identified in the PFC: parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive cells. Using biochemical and histochemical measures, we found that the protein level of PV is lowest in juveniles [postnatal days (PD) 25–35] and increases during adolescence (PD 45–55) to levels similar to those observed in adulthood (PD 65–75). In contrast, the protein expression of CR is reduced in adults compared to juvenile and adolescent animals, whereas CB levels remain mostly unchanged across the developmental window studied here. Semi-quantitative immunostaining analyses revealed that the periadolescent upregulation of PV and the loss of the CR signal appear to be attributable to changes in PV- and CR-positive innervation, which are dissociable from the trajectory of PV- and CR-positive cell number. At the synaptic level, our electrophysiological data revealed that a developmental facilitation of spontaneous glutamatergic synaptic inputs onto PV-positive/fast-spiking interneurons parallels the increase in prefrontal PV signal during the periadolescent transition. In contrast, no age-dependent changes in glutamatergic transmission were observed in PV-negative/non fast-spiking interneurons. Together, these findings emphasize that GABAergic inhibitory interneurons in the PFC undergo a dynamic, cell type-specific remodeling during adolescence and provide a developmental framework for understanding alterations in GABAergic circuits that occur in psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188(1):63–73

    Article  CAS  Google Scholar 

  • Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27(1–2):3–18

    Article  PubMed  Google Scholar 

  • Andressen C, Blumcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271(2):181–208

    Article  CAS  PubMed  Google Scholar 

  • Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568

    Article  CAS  PubMed  Google Scholar 

  • Bartos M, Elgueta C (2012) Functional characteristics of parvalbumin- and cholecystokinin-expressing basket cells. J Physiol 590(Pt 4):669–681

    CAS  PubMed  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318(5856):1645–1647

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Molloy R, Khan Y (1996) Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23(4):237–245

    Article  CAS  PubMed  Google Scholar 

  • Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81(6):1641–1660

    Article  PubMed Central  PubMed  Google Scholar 

  • Caballero A, Cass DK, Tseng KY (2012) Developmental trajectories of parvalbumin and calretinin positive interneurons in the prefrontal cortex and ventral hippocampus during adolescence. Soc Neurosci New Orleans, LA: Society for Neuroscience Online: 736.708/A765

  • Carder RK, Leclerc SS, Hendry SH (1996) Regulation of calcium-binding protein immunoreactivity in GABA neurons of macaque primary visual cortex. Cereb Cortex 6(2):271–287

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54(1–3):241–257

    Article  CAS  PubMed  Google Scholar 

  • Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 56(1):1–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160(6):1041–1052

    Article  PubMed Central  PubMed  Google Scholar 

  • Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 341(1):95–116

    Article  CAS  PubMed  Google Scholar 

  • Conde F, Maire-Lepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352(4):567–593

    Article  CAS  PubMed  Google Scholar 

  • Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Eggermann E, Jonas P (2011) How the ‘slow’ Ca(2+) buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci 15(1):20–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Eyles DW, McGrath JJ, Reynolds GP (2002) Neuronal calcium-binding proteins and schizophrenia. Schizophr Res 57(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol 364(4):567–608

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997a) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377(4):465–499

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Jays PR, Bacon SJ (1997b) Calretinin neurons in human medial prefrontal cortex (areas 24a, b, c, 32′, and 25). J Comp Neurol 381(4):389–410

    Article  CAS  PubMed  Google Scholar 

  • Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277(2):195–213

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24(2):379–431

    Article  CAS  PubMed  Google Scholar 

  • Gulyas AI, Buzsaki G, Freund TF, Hirase H (2006) Populations of hippocampal inhibitory neurons express different levels of cytochrome c. Eur J Neurosci 23(10):2581–2594

    Article  PubMed  Google Scholar 

  • Harris LW, Lockstone HE, Khaitovich P, Weickert CS, Webster MJ, Bahn S (2009) Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics 2:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23(15):6315–6326

    CAS  PubMed  Google Scholar 

  • Heng LJ, Markham JA, Hu XT, Tseng KY (2011) Concurrent upregulation of postsynaptic L-type Ca(2+) channel function and protein kinase A signaling is required for the periadolescent facilitation of Ca(2+) plateau potentials and dopamine D1 receptor modulation in the prefrontal cortex. Neuropharmacology 60(6):953–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoftman GD, Lewis DA (2011) Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 37(3):493–503

    Article  PubMed  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28(6):517–527

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Nakamura S (2003) Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J Neurosci 23(31):9987–9995

    CAS  PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313(4):574–586

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486

    Article  CAS  PubMed  Google Scholar 

  • Kilb W (2011) Development of the GABAergic system from birth to adolescence. Neuroscientist 18(6):613–630

    Article  PubMed  Google Scholar 

  • Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM (2006) A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 26(5):1604–1615

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Kawaguchi Y (1994) Three classes of GABAergic interneurons in neocortex and neostriatum. Jpn J Physiol 44(Suppl 2):S145–S148

    CAS  PubMed  Google Scholar 

  • Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75(5):1357–1372

    Article  PubMed  Google Scholar 

  • McDonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol 365(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Meskenaite V (1997) Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey Macaca fascicularis. J Comp Neurol 379(1):113–132

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell P (2011) Adolescent onset of cortical disinhibition in schizophrenia: insights from animal models. Schizophr Bull 37(3):484–492

    Article  PubMed  Google Scholar 

  • Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Philpot BD, Lim JH, Brunjes PC (1997) Activity-dependent regulation of calcium-binding proteins in the developing rat olfactory bulb. J Comp Neurol 387(1):12–26

    Article  CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20(1):485–494

    CAS  PubMed  Google Scholar 

  • Rotaru DC, Barrionuevo G, Sesack SR (2005) Mediodorsal thalamic afferents to layer III of the rat prefrontal cortex: synaptic relationships to subclasses of interneurons. J Comp Neurol 490(3):220–238

    Article  PubMed  Google Scholar 

  • Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2(11):a004051

    Article  CAS  PubMed  Google Scholar 

  • Sherwood CC, Raghanti MA, Stimpson CD, Spocter MA, Uddin M, Boddy AM, Wildman DE, Bonar CJ, Lewandowski AH, Phillips KA, Erwin JM, Hof PR (2010) Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes. Proc Biol Sci 277(1684):1011–1020

    Article  PubMed Central  PubMed  Google Scholar 

  • Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl) 184(2):103–124

    Article  CAS  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1981) A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex 15(1):49–57

    Article  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2007) Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 17(5):1235–1240

    Article  PubMed Central  PubMed  Google Scholar 

  • Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, O’Donnell P (2008) A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci 28(48):12691–12699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204(2):295–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2011) The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. Schizophr Bull 37(3):514–523

    Article  PubMed  Google Scholar 

  • Vincent SL, Pabreza L, Benes FM (1995) Postnatal maturation of GABA-immunoreactive neurons of rat medial prefrontal cortex. J Comp Neurol 355(1):81–92

    Article  CAS  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 95(9):5341–5346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Rosalind Franklin University, the Brain Research Foundation (KYT) and the National Institutes of Health Grant R01-MH086507 (KYT). We thank Daniel Thomases for editorial assistance and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuei Y. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, A., Flores-Barrera, E., Cass, D.K. et al. Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. Brain Struct Funct 219, 395–406 (2014). https://doi.org/10.1007/s00429-013-0508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0508-8

Keywords

Navigation