Skip to main content
Log in

Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2013

Abstract

Over the past few years multiple studies have attempted to uncover molecular signatures of memory reconsolidation when compared to consolidation. In the present study we used immunocytochemical detection of the MAPK/ERK1/2 pathway, to track activated neuronal circuits in the hippocampus and amygdala recruited during the consolidation and reconsolidation of a contextual fear conditioning (CFC) memory. We report selective differences in magnitude and temporal dynamics of activated ERK1/2 signalling in different subregions of these two structures between the post-training and post-retrieval periods, except in the dentate gyrus, where the patterns of activation were similar. We then focused on this brain area to dissect out the patterns of downstream ERK1/2 signalling components, including the phosphorylation of MSK-1 and histone H3 on ser10, along with the induction of the Immediate Early Genes (IEGs) Arc/Arg3.1, c-Fos and Zif268/Egr1 following CFC training and retrieval. We found that the completion of the nucleosomal response as well as the induction of IEGs shorter during the reconsolidation period as compared to consolidation. Our results shed new light on the cellular mechanisms underlying the consolidation and reconsolidation processes engaged following CFC training and retrieval and further extend the notion that memory reconsolidation is not mechanistically a repetition of consolidation. In addition, we provide evidence that the strength of a previously established CFC memory is characterized by distinct patterns of ERK1/2 activation in different hippocampal and amygdalar subfields upon CFC memory recall. Our results emphasize the differences between consolidation and reconsolidation processes in relation to contextual fear memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BLA:

Basolateral amygdala

CeA:

Central amygdala

CFC:

Contextual fear conditioning

ChR2:

Channelrhodopsin-2

CRE:

cAMP response element

DG:

Dentate gyrus

ERK:

Extracellular-signal Regulated Kinase

H3:

Histone H3

IEG:

Immediate early gene

LA:

Lateral amygdala

MAPK:

Mitogen-activated protein Kinase

MEK:

MAPK ERK kinase

MSK:

Mitogen and Stressed-activated protein Kinase

References

  • Anokhin KV, Tiunova AA, Rose SP (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15(11):1759–1765

    Article  PubMed  Google Scholar 

  • Athos J, Impey S, Pineda VV, Chen X, Storm DR (2002) Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat Neurosci 5(11):1119–1120

    Article  CAS  PubMed  Google Scholar 

  • Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7):602–609

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom HC, McDonald CG, Johnson LR (2011) Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains. PLoS ONE 6(1):e15698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Besnard A (2012) A model of hippocampal competition between new learning and memory updating. J Neurosci 32(10):3281–3283

    Article  CAS  PubMed  Google Scholar 

  • Besnard A, Caboche J, Laroche S (2012) Reconsolidation of memory: a decade of debate. Prog Neurobiol 99(1):61–80

    Article  PubMed  Google Scholar 

  • Bode AM, Dong Z (2005) Inducible covalent posttranslational modification of histone H3. Sci STKE 2005(281):re4

    PubMed  Google Scholar 

  • Brami-Cherrier K, Roze E, Girault JA, Betuing S, Caboche J (2009) Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 108(6):1323–1335

    Article  CAS  PubMed  Google Scholar 

  • Bustos SG, Maldonado H, Molina VA (2006) Midazolam disrupts fear memory reconsolidation. Neuroscience 139(3):831–842

    Article  CAS  PubMed  Google Scholar 

  • Changelian PS, Feng P, King TC, Milbrandt J (1989) Structure of the NGFI-A gene and detection of upstream sequences responsible for its transcriptional induction by nerve growth factor. Proc Natl Acad Sci USA 86(1):377–381

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR (2005) PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 8(7):925–931

    Article  CAS  PubMed  Google Scholar 

  • Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S (2011) Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus. doi:10.1002/hipo.20926

    PubMed  Google Scholar 

  • Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13(3):322–328

    Article  CAS  PubMed  Google Scholar 

  • Chwang WB, Arthur JS, Schumacher A, Sweatt JD (2007) The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 27(46):12732–12742

    Article  CAS  PubMed  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto B, Kallnik M, Weisenhorn DM, Falls WA, Wurst W, Holter SM (2009) Activation of ERK/MAPK in the lateral amygdala of the mouse is required for acquisition of a fear-potentiated startle response. Neuropsychopharmacology 34(2):356–366

    Article  PubMed  Google Scholar 

  • Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE (2007) Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 10(4):414–416

    CAS  PubMed  Google Scholar 

  • Duvarci S, Nader K, LeDoux JE (2005) Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci 21(1):283–289

    Article  PubMed  Google Scholar 

  • Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15(4):177–182

    CAS  PubMed  Google Scholar 

  • Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110(1–2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23(2):229–232

    Article  CAS  PubMed  Google Scholar 

  • Franklin K, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

  • Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23(5):743–760

    Article  CAS  PubMed  Google Scholar 

  • Gordon WC (1977) Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon. Physiol Behav 18(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Gordon WC, Spear NE (1973) The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol Behav 10(6):1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Guzowski JF, Timlin JA, Roysam B, McNaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15(5):599–606

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13(7):1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Herrera RE, Nordheim A, Stewart AF (1997) Chromatin structure analysis of the human c-fos promoter reveals a centrally positioned nucleosome. Chromosoma 106(5):284–292

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci USA 106(1):316–321

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116(3):467–479

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256(5057):675–677

    Article  CAS  PubMed  Google Scholar 

  • Kubik S, Miyashita T, Guzowski JF (2007) Using immediate-early genes to map hippocampal subregional functions. Learn Mem 14(11):758–770

    Article  PubMed  Google Scholar 

  • Languille S, Davis S, Richer P, Alcacer C, Laroche S, Hars B (2009) Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis. Eur J Neurosci 30(10):1923–1930

    Article  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Lee JL (2009) Reconsolidation: maintaining memory relevance. Trends Neurosci 32(8):413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304(5672):839–843

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004) Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubin FD, Sweatt JD (2007) The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55(6):942–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mactutus CF, Riccio DC, Ferek JM (1979) Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204(4399):1319–1320

    Article  CAS  PubMed  Google Scholar 

  • Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, Kida S (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29(2):402–413

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Fanselow MS (1996) The amygdala and fear conditioning: has the nut been cracked? Neuron 16(2):237–240

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5(11):844–852

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL (2000) Memory–a century of consolidation. Science 287(5451):248–251

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10(3):224–234

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuis S, Forstmann BU, Wagenmakers EJ (2011) Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 14(9):1105–1107

    Article  CAS  PubMed  Google Scholar 

  • Osan R, Tort AB, Amaral OB (2011) A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS ONE 6(8):e23113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul S, Olausson P, Venkitaramani DV, Ruchkina I, Moran TD, Tronson N, Mills E, Hakim S, Salter MW, Taylor JR, Lombroso PJ (2007) The striatal-enriched protein tyrosine phosphatase gates long-term potentiation and fear memory in the lateral amygdala. Biol Psychiatry 61(9):1049–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1(1):34–44

    CAS  PubMed  Google Scholar 

  • Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19(15):6623–6628

    CAS  PubMed  Google Scholar 

  • Radwanska K, Nikolaev E, Knapska E, Kaczmarek L (2002) Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. NeuroReport 13(17):2241–2246

    Article  PubMed  Google Scholar 

  • Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, Caroni P (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518

    Article  CAS  PubMed  Google Scholar 

  • Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J (2002) Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol Cell Neurosci 21(3):463–476

    Article  CAS  PubMed  Google Scholar 

  • Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE (2000) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20(21):8177–8187

    CAS  PubMed  Google Scholar 

  • Sekeres MJ, Mercaldo V, Richards B, Sargin D, Mahadevan V, Woodin MA, Frankland PW, Josselyn SA (2012) Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 32(49):17857–17868

    Article  CAS  PubMed  Google Scholar 

  • Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD (1999) A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 6(5):478–490

    Article  CAS  PubMed  Google Scholar 

  • Sgambato V, Pages C, Rogard M, Besson MJ, Caboche J (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci 18(21):8814–8825

    CAS  PubMed  Google Scholar 

  • Shalin SC, Zirrgiebel U, Honsa KJ, Julien JP, Miller FD, Kaplan DR, Sweatt JD (2004) Neuronal MEK is important for normal fear conditioning in mice. J Neurosci Res 75(6):760–770

    Article  CAS  PubMed  Google Scholar 

  • Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53(1):79–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J (2006) Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation. Learn Mem 13(3):349–358

    Article  CAS  PubMed  Google Scholar 

  • Trifilieff P, Calandreau L, Herry C, Mons N, Micheau J (2007) Biphasic ERK1/2 activation in both the hippocampus and amygdala may reveal a system consolidation of contextual fear memory. Neurobiol Learn Mem 88(4):424–434

    Article  PubMed  Google Scholar 

  • Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8(4):262–275

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52(3):403–407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the “Centre National de la Recherche Scientifique” (CNRS), l’ “Agence Nationale pour la Recherche” (ANR-08-BLAN) and the “Fondation Jerôme Lejeune”. A.B. has been supported by the Edmond Rothschild Chemical Dependency Institute Beth Israël Medical center and Fondation pour la Recherche Médicale.

Conflict of interest

All authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caboche Jocelyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoine, B., Serge, L. & Jocelyne, C. Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval. Brain Struct Funct 219, 415–430 (2014). https://doi.org/10.1007/s00429-013-0505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0505-y

Keywords

Navigation