Skip to main content
Log in

Development of the dorsal and ventral thalamus in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus)

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The living monotremes (platypus and echidnas) are distinguished from therians as well as each other in part by the unusual structure of the thalamus in each. In particular, the platypus has an enlarged ventral posterior (VP) nucleus reflecting the great behavioural importance of trigeminosensation and electroreception. The embryological collections of the Museum für Naturkunde in Berlin were used to analyse the development of the dorsal thalamus and ventral thalamus (prethalamus) in both species. Prosomeric organization of the forebrain emerged at 6 mm crown-rump length (CRL), but thalamic neurogenesis did not commence until about 8–9 mm CRL. Distinctive features of the dorsal thalamus in the two species began to emerge after hatching (about 14–15 mm CRL). During the first post-hatching week, dense clusters of granular cells aggregated to form the VP of the platypus, whereas the VP complex of the echidna remained smaller and divided into distinct medial and lateral divisions. At the end of the first post-hatching week, the thalamocortical tract was much larger in the platypus than the echidna. The dorsal thalamus of the platypus is essentially adult-like by the sixth week of post-hatching life. The similar appearance of the dorsal thalamus in the two species until the time of hatching, followed by the rapid expansion of the VP in the platypus, is most consistent with ancestral platypuses having undergone changes in the genetic control of thalamic neurogenesis to produce a large VP for trigeminal electroreception after the divergence of the two lineages of monotreme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman J, Bayer SA (1979a) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and internuclear chronological gradients in the thalamus. J Comp Neurol 188:455–472

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1979b) Development of the diencephalon in the rat. VI. Re-evaluation of the embryonic development of the thalamus on the basis of thymidine-radiographic datings. J Comp Neurol 188:501–524

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1988a) Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium. J Comp Neurol 275:346–377

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1988b) Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium. J Comp Neurol 275:378–405

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1988c) Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus. J Comp Neurol 275:406–428

    Article  PubMed  CAS  Google Scholar 

  • Andres KH, von Düring M, Iggo A, Proske U (1991) The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol 184:371–393

    Article  PubMed  CAS  Google Scholar 

  • Ashwell KWS (2010) Diencephalon and associated structures: prethalamus, thalamus, hypothalamus, pituitary gland, epithalamus, and pretectal area. In: Ashwell KWS (ed) The neurobiology of Australian marsupials. Cambridge University Press, Cambridge, pp 95–118

    Google Scholar 

  • Ashwell KWS, Paxinos G (2005) Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short-beaked echidna. J Chem Neuroanat 30:161–183

    Article  PubMed  Google Scholar 

  • Ashwell K, Marotte LR, Mai JK (2010) Atlas of the brain of the developing tammar wallaby (Macropus eugenii). In: Ashwell KWS (ed) The neurobiology of Australian marsupials. Cambridge University Press, Cambridge, pp 245–248

  • Camens AB (2010) Were early tertiary monotremes really all aquatic? Inferring paleobiology and phylogeny from a depauperate fossil record. Proc Natl Acad Sci USA 107:E12

    Article  PubMed  CAS  Google Scholar 

  • Divac I, Holst MC, Nelson J, McKenzie JS (1987a) Afferents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area. Brain Behav Evol 30:303–320

    Article  PubMed  CAS  Google Scholar 

  • Divac I, Pettigrew JD, Holst MC, McKenzie JS (1987b) Efferent connections of the prefrontal cortex of echidna (Tachyglossus aculeatus). Brain Behav Evol 30:321–327

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1987) Electroreceptors in the platypus. Nature 326:386–388

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1988) Receptors in the bill of the platypus. J Physiol 400:349–366

    PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1989) Responses of electroreceptors in the snout of the echidna. J Physiol 414:521–538

    PubMed  CAS  Google Scholar 

  • Griffiths M (1978) The biology of the monotremes. Academic, New York

    Google Scholar 

  • Griffiths M, McIntosh DL, Coles REA (1969) The mammary gland of the echidna, Tachyglossus aculeatus, with observations on the incubation of the egg and on the newly hatched young. J Zool (Lond) 158:371–386

    Article  CAS  Google Scholar 

  • Hawkins M, Battaglia A (2009) Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust J Zool 57:283–293

    Article  Google Scholar 

  • Holland N, Jackson SM (2002) Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J Zool (Lond) 256:279–288

    Article  Google Scholar 

  • Hughes RL, Hall LS (1998) Early development and embryology of the platypus. Phil Trans R Soc Lond B Biol Soc 353:1101–1114

    Article  CAS  Google Scholar 

  • Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, Cambridge

  • Manger PR, Hughes RL (1992) Ultrastructure and distribution of epidermal sensory receptors in the beak of the echidna, Tachyglossus aculeatus. Brain Behav Evol 40:287–296

    Article  PubMed  CAS  Google Scholar 

  • Manger PR, Pettigrew JD (1996) Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav Evol 48:27–54

    Article  PubMed  CAS  Google Scholar 

  • Manger PR, Hall LS, Pettigrew JD (1998) The development of the external features of the platypus (Ornithorhynchus anatinus). Phil Trans R Soc Lond B Biol Sci 353:1115–1125

    Article  CAS  Google Scholar 

  • Mikula S, Manger PR, Jones EG (2008) The thalamus of the monotremes: cyto- and myeloarchitecture and chemical neuroanatomy. Phil Trans R Soc Lond B Biol Sci 363:2415–2440

    Article  Google Scholar 

  • Musser AM (2003) Review of the monotreme fossil record and comparison of paleontological and molecular data. Comp Biochem Physiol A Mol Integr Physiol 136:927–942

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202:1447–1454

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Bennett TH, Lee MSY (2009) Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci USA 106:17089–17094

    Article  PubMed  CAS  Google Scholar 

  • Proske U, Gregory JE, Iggo A (1998) Sensory receptors in monotremes. Phil Trans R Soc Lond B Biol Sci 353:1187–1198

    Article  CAS  Google Scholar 

  • Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  PubMed  CAS  Google Scholar 

  • Regidor J, Divac I (1987) Architectonics of the thalamus in the echidna (Tachyglossus aculeatus): Search for the mediodorsal nucleus. Brain Behav Evol 30:328–341

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB, Papenfuss AT, Shaw G, Pask AJ (2009) Eggs, embryos and the evolution of imprinting: insights from the platypus genome. Reprod Fertil Dev 21:935–942

    Article  PubMed  CAS  Google Scholar 

  • Rismiller PD, McKelvey MW (2003) Body mass, age and sexual maturity in short-beaked echidnas, Tachyglossus aculeatus. Comp Biochem Physiol A Mol Integr Physiol 136:851–865

    Article  PubMed  Google Scholar 

  • Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319:401–402

    Article  PubMed  CAS  Google Scholar 

  • Werneburg I, Sánchez-Villagra MR (2011) The early development of the echidna, Tachyglossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zool 92:75–88

    Article  Google Scholar 

  • Zeller U (1989) Die Entwicklung und Morphologie des Schadels von Ornithorhynchus anatinus: (Mammalia, Prototheria, Monotremata). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft

Download references

Acknowledgments

The Alexander von Humboldt Foundation generously provided financial support for this project, making it possible to perform an extensive analysis of the Museum für Naturkunde (MfN) embryological collections. I am particularly in debt to Dr Peter Giere of the MfN, whose kind and considerate help in accessing the collection and using the museum equipment was invaluable. I am also very grateful to Professor Ulrich Zeller of the MfN for helpfully providing access to his collection of sectioned platypus and echidna heads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken W. S. Ashwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashwell, K.W.S. Development of the dorsal and ventral thalamus in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus). Brain Struct Funct 217, 577–589 (2012). https://doi.org/10.1007/s00429-011-0364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0364-3

Keywords

Navigation