Skip to main content
Log in

Developments of sulcal pattern and subcortical structures of the forebrain in cynomolgus monkey fetuses: 7-tesla magnetic resonance imaging provides high reproducibility of gross structural changes

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The aim of this study was to spatio-temporally clarify gross structural changes in the forebrain of cynomolgus monkey fetuses using 7-tesla magnetic resonance imaging (MRI). T1-weighted coronal, horizontal, and sagittal MR slices of fixed left cerebral hemispheres were obtained from one male fetus at embryonic days (EDs) 70–150. The timetable for fetal sulcation by MRI was in good agreement with that by gross observations, with a lag time of 10–30 days. A difference in detectability of some sulci seemed to be associated with the length, depth, width, and location of the sulci. Furthermore, MRI clarified the embryonic days of the emergence of the callosal (ED 70) and circular (ED 90) sulci, which remained unpredictable under gross observations. Also made visible by the present MRI were subcortical structures of the forebrain such as the caudate nucleus, globus pallidus, putamen, major subdivisions of the thalamus, and hippocampal formation. Their adult-like features were formed by ED 100, corresponding to the onset of a signal enhancement in the gray matter, which reflects neuronal maturation. The results reveal a highly reproducible level of gross structural changes in the forebrain using a high spatial 7-tesla MRI. The present MRI study clarified some changes that are difficult to demonstrate nondestructively using only gross observations, for example, the development of cerebral sulci located on the deep portions of the cortex, as well as cortical and subcortical neuronal maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

apos:

Anterior parietal sulcus

cal:

Calcarine sulcus

cas:

Callosal sulcus

cc:

Corpus callosum

Cd:

Caudate nucleus

cgs:

Cingulate sulcus

Cl:

Claustrum

cos:

Collateral sulcus

FLV:

Frontal horn of lateral ventricle

GP:

Globus pallidus

HF:

Hippocampal formation

his:

Hippocampal sulcus

Hb:

Habenular nucleus

ical:

Inferior calcarine sulcus

ios:

Inferior occipital sulcus

MD:

Mediodorsal nucleus of thalamus

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

Ln:

Lentiform nucleus

OG:

Occipital gyrus

olfs:

Olfactory sulcus

ots:

Occipitotemporal sulcus

OLV:

Occipital horn of lateral ventricle

plic:

Posterior limb of internal capsule

pos:

Parietooccipital sulcus

Pu:

Putamen

Pul:

Pulvinar of thalamus

RF:

Radiofrequency

rf:

Rhinal fissure

ros:

Rostral sulcus

sbps:

Subparietal sulcus

scal:

Superior calcarine sulcus

SE:

Spin-echo

Spt:

Septum

TE:

Echo time

Th:

Thalamus

TR:

Repetition time

VA:

Ventral anterior nucleus of thalamus

VL:

Ventral lateral nucleus of thalamus

VP:

Ventral posterior nucleus of thalamus

VZ:

Ventricular zone

References

  • Aoki I, Wu YJ, Silva AC, Lynch RM, Koretsky AP (2004) In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22:1046–1059. doi:10.1016/j.neuroimage.2004.03.031

    Article  PubMed  Google Scholar 

  • Augustinack JC, van der Kouwe AJ, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR (2005) Detection of entorhinal layer II using 7Tesla [corrected] magnetic resonance imaging. Ann Neurol 57:489–494. doi:10.1002/ana.20426

    Article  PubMed  Google Scholar 

  • Chew WM, Rowley HA, Barkovich AJ (1992) Magnetization transfer contrast imaging in pediatric patients. Radiology 185:281

    Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93. doi:10.1002/ana.410010109

    Article  PubMed  CAS  Google Scholar 

  • Duyn JH, van Gelderen P (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104:11796–11801. doi:10.1073/pnas.0610821104

    Article  PubMed  CAS  Google Scholar 

  • Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313–1321

    PubMed  Google Scholar 

  • Fukunishi K, Sawada K, Kashima M, Sakata-Haga H, Fukuzaki K, Fukui Y (2006) Development of cerebral sulci and gyri in fetuses of cynomolgus monkeys (Macaca fascicularis). Anat Embryol (Berl) 211:757–764. doi:10.1007/s00429-006-0136-7

    Article  CAS  Google Scholar 

  • Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag G, Hassan M (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22:184–189

    PubMed  CAS  Google Scholar 

  • Gilles FH, Gomez IG (2005) Developmental neuropathology of the second half of gestation. Early Hum Dev 81:245–253. doi:10.1016/j.earlhumdev.2005.01.005

    Article  PubMed  Google Scholar 

  • Hansen PE, Ballesteros MC, Soila K, Garcia L, Howard JM (1993) MR imaging of the developing human brain. Part 1. Prenatal development. Radiographics 13:21–36

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T (1992) Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 14:1–6

    PubMed  CAS  Google Scholar 

  • Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH (1986) MRI of normal brain maturation. AJNR Am J Neuroradiol 7:201–208

    PubMed  CAS  Google Scholar 

  • Kashima M, Sawada K, Fukunishi K, Sakata-Haga H, Tokado H, Fukui Y (2008) Development of cerebral sulci and gyri in fetuses of cynomolgus monkeys (Macaca fascicularis). II. Gross observation of the medial surface. Brain Struct Funct 212:513–520

    Article  PubMed  Google Scholar 

  • Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210:751–758

    PubMed  CAS  Google Scholar 

  • Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159. doi:10.1016/j.neuroimage.2007.11.021

    Article  PubMed  Google Scholar 

  • Martin RF, Bowden DM (2000) Primate brain maps: structure of the macaque brain. Elsevier, Amsterdam

    Google Scholar 

  • Neal J, Takahashi M, Silva M, Tiao G, Walsh CA, Sheen VL (2007) Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J Anat 210:66–77. doi:10.1111/j.1469-7580.2006.00674.x

    Article  PubMed  Google Scholar 

  • Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  • Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T (1994) Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 15:231–238

    PubMed  CAS  Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The Rhesus monkey brain. In: Stereotaxic coordinates. Academic Press, San Diego

  • Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216. doi:10.1016/j.ejrad.2005.11.020

    Article  PubMed  Google Scholar 

  • Sakuma H, Nomura Y, Takeda K, Tagami T, Nakagawa T, Tamagawa Y, Ishii Y, Tsukamoto T (1991) Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180:229–233

    PubMed  CAS  Google Scholar 

  • Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW (1996) Three-dimensional statistical analysis of sulcal variability in the human brain. J Neurosci 16:4261–4274

    PubMed  CAS  Google Scholar 

  • van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Adèr HJ, Valk J (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200:389–396

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (20590176) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors wish to thank Ms. M. Yoneyama and Mr. S. Saito of the MR Molecular Imaging Team, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263–8555, Japan, for their expert technical assistance with the MRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Sawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, K., Sun, XZ., Fukunishi, K. et al. Developments of sulcal pattern and subcortical structures of the forebrain in cynomolgus monkey fetuses: 7-tesla magnetic resonance imaging provides high reproducibility of gross structural changes. Brain Struct Funct 213, 469–480 (2009). https://doi.org/10.1007/s00429-009-0204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-009-0204-x

Keywords

Navigation