Skip to main content

Advertisement

Log in

Myosin-based contraction is not necessary for cardiac c-looping in the chick embryo

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

During the initial phase of cardiac looping, known as c-looping, the heart bends and twists into a c-shaped tube with the convex outer curvature normally directed toward the right side of the embryo. Despite intensive study for more than 80 years, the biophysical mechanisms that drive and regulate looping remain poorly understood, although some investigators have speculated that differential cytoskeletal contraction supplies the driving force for c-looping. The purpose of this investigation was to test this hypothesis. To inhibit contraction, embryonic chick hearts at stages 10–12 (10–16 somites, 33–48 h) were exposed to the myosin inhibitors 2,3-butanedione monoxime (BDM), ML-7, Y-27632, and blebbistatin. Experiments were conducted in both whole embryo culture and, to focus on bending alone, isolated heart culture. Measurements of heart stiffness and phosphorylation of the myosin regulatory light chains showed that BDM, Y-27632, and blebbistatin significantly reduced myocardial contractility, while ML-7 had a lesser effect. None of these drugs significantly affected looping during the studied stages. These results suggest that active contraction is not required for normal c-looping of the embryonic chick heart between stages 10 and 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Voronov et al. (2004) have shown that a relatively small amount of dextral bending also occurs, but torsion is the main determinant of left–right looping directionality.

  2. Specified stages correspond to the time at which culture began.

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Bain J, McLauchlan H, Elliott M, Cohen P (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed  CAS  Google Scholar 

  • Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  PubMed  CAS  Google Scholar 

  • Brixius K, Schwinger RH (2000) Modulation of cross-bridge interaction by 2,3-butanedione monoxime in human ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 361:440–444

    Article  PubMed  CAS  Google Scholar 

  • Butler JK (1952) An experimental analysis of cardiac loop formation in the chick. MS Thesis, University of Texas

  • Cheung A, Dantzig JA, Hollingworth S, Baylor SM, Goldman YE, Mitchison TJ, Straight AF (2002) A small-molecule inhibitor of skeletal muscle myosin II. Nat Cell Biol 4:83–88

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Cramer LP, Mitchison TJ (1995) Myosin is involved in postmitotic cell spreading. J Cell Biol 131:179–189

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz MV, Sanchez-Gomez C (1998) Straight heart tube. Primitive cardiac cavities vs. primitive cardiac segments. In: de la Cruz MV, Markwald RR (eds) Living morphogenesis of the heart. Birkhauser, Boston, pp 85–98

    Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394

    Article  PubMed  CAS  Google Scholar 

  • Ebus JP, Stienen GJ (1996) Effects of 2,3-butanedione monoxime on cross-bridge kinetics in rat cardiac muscle. Pflugers Arch 432:921–929

    Article  PubMed  CAS  Google Scholar 

  • Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627

    Article  PubMed  CAS  Google Scholar 

  • Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB (2000) Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 275:18366–18374

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Harvey RP (1998) Cardiac looping—an uneasy deal with laterality. Semin Cell Dev Biol 9:101–108

    Article  PubMed  CAS  Google Scholar 

  • Itasaki N, Nakamura H, Sumida H, Yasuda M (1991) Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat Embryol 183:29–39

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  PubMed  CAS  Google Scholar 

  • Kolodney MS, Elson EL (1993) Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem 268:23850–23855

    PubMed  CAS  Google Scholar 

  • Latacha KS, Rémond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA (2005) The role of actin polymerization in bending of the early heart tube. Dev Dyn 233:1272–1286

    Article  PubMed  CAS  Google Scholar 

  • Manasek FJ (1976) Heart development: interactions involved in cardiac morphogenesis. In: Poste G, Nicholson GL (eds) Cell surface in animal embryogenesis and development. North-Holland, New York, pp 545–598

    Google Scholar 

  • Manasek FJ, Monroe RG (1972) Early cardiac morphogenesis is independent of function. Dev Biol 27:584–588

    Article  PubMed  CAS  Google Scholar 

  • Männer J (2000) Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259:248–262

    Article  PubMed  Google Scholar 

  • Manning A, McLachlan JC (1990) Looping of chick embryo hearts in vitro. J Anat 168:257–263

    PubMed  CAS  Google Scholar 

  • Mercola M, Levin M (2001) Left–right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17:779–805

    Article  PubMed  CAS  Google Scholar 

  • Ostap EM (2002) 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J Muscle Res Cell Motil 23:305–308

    Article  PubMed  CAS  Google Scholar 

  • Rudy DE, Yatskievych TA, Antin PB, Gregorio CC (2001) Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev Dyn 221:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200

    PubMed  CAS  Google Scholar 

  • Sellin LC, McArdle JJ (1994) Multiple effects of 2,3-butanedione monoxime. Pharmacol Toxicol 74:305–313

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi I, Takamatsu T, Minamikawa T, Fujita S (1992) 3-D observation of actin filaments during cardiac myofibrinogenesis in chick embryo using a confocal laser scanning microscope. Anat Embryol 185:401–408

    Article  PubMed  CAS  Google Scholar 

  • Sissman NJ (1966) Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature 210:504–507

    Article  PubMed  CAS  Google Scholar 

  • Soeno Y, Shimada Y, Obinata T (1999) BDM (2,3-butanedione monoxime), an inhibitor of myosin–actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. Cell Tissue Res 295:307–316

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Olson EN (1997) Knowing in your heart what’s right. Trends Cell Biol 7:447–453

    Article  PubMed  CAS  Google Scholar 

  • Stalsberg H (1969) Regional mitotic activity in the precardiac mesoderm and differentiating heart tube in the chick embryo. Dev Biol 20:18–45

    Article  PubMed  CAS  Google Scholar 

  • Stalsberg H (1970) Mechanism of dextral looping of the embryonic heart. Am J Cardiol 25:265–271

    Article  PubMed  CAS  Google Scholar 

  • Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Taber LA, Lin IE, Clark EB (1995) Mechanics of cardiac looping. Dev Dyn 203:42–50

    PubMed  CAS  Google Scholar 

  • Voronov DA, Taber LA (2002) Cardiac looping in experimental conditions: the effects of extraembryonic forces. Dev Dyn 224:413–421

    Article  PubMed  Google Scholar 

  • Voronov DA, Alford PW, Xu G, Taber LA (2004) The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Dev Biol 272:339–350

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki T, Kolodney MS, Zahalak GI, Elson EL (2000) Cell mechanics studied by a reconstituted model tissue. Biophys J 79:2353–2368

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036

    PubMed  CAS  Google Scholar 

  • Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K (2001) Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128:2953–2962

    PubMed  CAS  Google Scholar 

  • Wettschureck N, Offermanns S (2002) Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80:629–638

    Article  PubMed  CAS  Google Scholar 

  • Zahalak GI, McConnaughey WB, Elson EL (1990) Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J Biomech Eng 112:283–294

    PubMed  CAS  Google Scholar 

  • Zamir EA, Srinivasan V, Perucchio R, Taber LA (2003) Mechanical asymmetry in the embryonic chick heart during looping. Ann Biomed Eng 31:1327–1336

    Article  PubMed  Google Scholar 

  • Zhao Z, Rivkees SA (2003) Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 226:24–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank William B. McConnaughey, Kenneth M. Pryse, and Tetsuro Wakatsuki for their help and advice with the indentation experiments. This work was supported by NIH grant R01 HL64347 (LAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Taber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rémond, M.C., Fee, J.A., Elson, E.L. et al. Myosin-based contraction is not necessary for cardiac c-looping in the chick embryo. Anat Embryol 211, 443–454 (2006). https://doi.org/10.1007/s00429-006-0094-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0094-0

Keywords

Navigation