Skip to main content

Advertisement

Log in

Prognostic implications of tumor histology and microenvironment in surgically resected intrahepatic cholangiocarcinoma: a single institutional experience

  • ORIGINAL ARTICLE
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignant neoplasm. Certain histologic features and the tumor microenvironment may impact disease progression. We aim to characterize the clinicopathologic features of ICC to identify prognostic factors. A total of 50 surgically resected ICC (partial or transplant) cases were analyzed. The cohort included 26 men and 24 women with a median age of 62 years. Eighteen (36%) cases were multifocal ICC with a mean largest tumor size of 6.5 cm. Neoadjuvant and adjuvant chemotherapy was done in eight (16%) and 33 (66%) patients, respectively. Histologically, 42 (84%) were small duct type, seven (14%) large duct type, and one mixed (2%). Thirty (60%) cases showed lymphovascular invasion (LVI) and 11 (22%) with perineural invasion (PNI). Twenty-eight (56%) cases demonstrated dense intratumoral hyaline fibrosis and 18 (36%) with tumor necrosis, each ≥ 10% tumor volume. On follow-up, 35 (70%) patients died of disease after a median disease-specific survival (DSS) of 21 months. Univariate analysis revealed that hyaline fibrosis and adjuvant chemotherapy were associated with better DSS, while tumor size, multifocality, necrosis, and peritumoral neutrophil to lymphocyte ratio were associated with worse DSS. In contrast, age, sex, small vs. large duct types, LVI, and individual inflammatory cell counts were not significant prognostic factors. In summary, ICC is a heterogeneous malignancy with variable clinical courses associated with tumor burden, histology, and microenvironment. Targeting specific components within the tumor microenvironments may be a promising approach for treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Liao X, Zhang D (2021) The 8th Edition American Joint Committee on Cancer Staging for Hepato-pancreato-biliary Cancer: a review and update. Arch Pathol Lab Med 145:543–553. https://doi.org/10.5858/arpa.2020-0032-RA

    Article  PubMed  Google Scholar 

  2. Patel T (2001) Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33:1353–1357. https://doi.org/10.1053/jhep.2001.25087

    Article  CAS  PubMed  Google Scholar 

  3. Alsaleh M, Leftley Z, Barbera TA, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Cox IJ, Chamodol N, Syms RR, Andrews RH, Taylor-Robinson SD (2019) Cholangiocarcinoma: a guide for the nonspecialist. Int J Gen Med 12:13–23. https://doi.org/10.2147/IJGM.S186854

    Article  CAS  PubMed  Google Scholar 

  4. Tyson GL, El-Serag HB (2011) Risk factors for cholangiocarcinoma. Hepatology 54:173–184. https://doi.org/10.1002/hep.24351

    Article  CAS  PubMed  Google Scholar 

  5. Izquierdo-Sanchez L, Lamarca A, La Casta A, Buettner S, Utpatel K, Klumpen HJ, Adeva J, Vogel A, Lleo A, Fabris L, Ponz-Sarvise M, Brustia R, Cardinale V, Braconi C, Vidili G, Jamieson NB, Macias RI, Jonas JP, Marzioni M, Holowko W, Folseraas T, Kupcinskas J, Sparchez Z, Krawczyk M, Krupa L, Scripcariu V, Grazi GL, Landa-Magdalena A, Ijzermans JN, Evert K, Erdmann JI, Lopez-Lopez F, Saborowski A, Scheiter A, Santos-Laso A, Carpino G, Andersen JB, Marin JJ, Alvaro D, Bujanda L, Forner A, Valle JW, Koerkamp BG, Banales JM (2022) Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J Hepatol 76:1109–1121. https://doi.org/10.1016/j.jhep.2021.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Rizvi S, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17:557–588. https://doi.org/10.1038/s41575-020-0310-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bekki Y, Von Ahrens D, Takahashi H, Schwartz M, Gunasekaran G (2021) Recurrent Intrahepatic Cholangiocarcinoma - Review. Front Oncol 11:776863. https://doi.org/10.3389/fonc.2021.776863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang B-G, Sun L-L, Yu W-L, Tang Z-H, Zong M, Zhang Y-J (2009) Retrospective analysis of histopathologic prognostic factors after hepatectomy for intrahepatic cholangiocarcinoma. Cancer J 15(3):257–261. https://doi.org/10.1097/PPO.0b013e31819e3312

  9. WCoTE Board (2019) WHO classification of tumors: digestive system tumours, 5th edn. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  10. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM (2014) Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol 27:1163–1173. https://doi.org/10.1038/modpathol.2013.241

    Article  CAS  PubMed  Google Scholar 

  11. Kaminsky P, Preiss J, Sasatomi E, Gerber DA (2017) Biliary adenofibroma: a rare hepatic lesion with malignant features. Hepatology 65:380–383. https://doi.org/10.1002/hep.28818

    Article  PubMed  Google Scholar 

  12. Bhalla A, Mann SA, Chen S, Cummings OW, Lin J (2017) Histopathological evidence of neoplastic progression of von Meyenburg complex to intrahepatic cholangiocarcinoma. Hum Pathol 67:217–224. https://doi.org/10.1016/j.humpath.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM (2014) Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol  27(8):1163–1173. https://doi.org/10.1038/modpathol.2013.241

  14. Sigel CS, Drill E, Zhou Y, Basturk O, Askan G, Pak LM, Vakiani E, Wang T, Boerner T, Do RKG, Simpson AL, Jarnagin W, Klimstra DS (2018) Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. Am J Surg Pathol 42(10):1334–1345. https://doi.org/10.1097/PAS.0000000000001118

  15. Choe JY, Kim H (2014) Intrahepatic cholangiocarcinoma with predominant ductal plate malformation pattern. Clin Mol Hepatol 20:214–217. https://doi.org/10.3350/cmh.2014.20.2.214

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nakanuma Y, Sato Y, Ikeda H, Harada K, Kobayashi M, Sano K, Uehara T, Yamamoto M, Ariizumi S, Park YN, Choi JH, Yu E (2012) Intrahepatic cholangiocarcinoma with predominant “ductal plate malformation” pattern: a new subtype. Am J Surg Pathol 36:1629–1635. https://doi.org/10.1097/PAS.0b013e31826e0249

    Article  PubMed  Google Scholar 

  17. Argani P, Palsgrove DN, Anders RA, Smith SC, Saoud C, Kwon R, Voltaggio L, Assarzadegan N, Oshima K, Rooper L, Matoso A, Zhang L, Cantarel BL, Gagan J, Antonescu CR (2021) A novel NIPBL-NACC1 gene fusion is characteristic of the cholangioblastic variant of intrahepatic cholangiocarcinoma. Am J Surg Pathol 45:1550–1560. https://doi.org/10.1097/PAS.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chung T, Park YN (2022) Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma. Front Med (Lausanne) 9:857140. https://doi.org/10.3389/fmed.2022.857140

    Article  PubMed  Google Scholar 

  19. Amin MBES, Greene F et al (2017) AJCC Cancer Staging Manual, 8th edn. Springer, New York, NY

    Google Scholar 

  20. Fabris L, Sato K, Alpini G, Strazzabosco M (2021) The tumor microenvironment in cholangiocarcinoma progression. Hepatology 73(Suppl 1):75–85. https://doi.org/10.1002/hep.31410

    Article  PubMed  Google Scholar 

  21. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912. https://doi.org/10.1038/onc.2008.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruffolo LA-O, Jackson KM, Kuhlers PC, Dale BS, Figueroa Guilliani NM, Ullman NA, Burchard PR, Qin SS, Juviler PG, Keilson JM, Morrison AB, Georger M, Jewell R, Calvi LM, Nywening TM, O'Dell MR, Hezel AA-O, De Las Casas L, Lesinski GA-O, Yeh JJ, Hernandez-Alejandro R, Belt BA, Linehan DC (2022) GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity. Gut 71(7):1386–1398. https://doi.org/10.1136/gutjnl-2021-324109

  23. Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, Gong Y, Ni Y, Wang C, Zhang Y, Xi J, Wang S, Shi L, Zhang L, Yue W, Pei X, Liu B, Yan X (2020) Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol 73(5):1118–1130. https://doi.org/10.1016/j.jhep.2020.05.039

  24. Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, Pascal G, Elarouci N, Ayadi M, Adam R, Azoulay D, Castaing D, Vibert E, Cherqui D, Samuel D, Sa Cuhna A, Marchio A, Pineau P, Guettier C, de Reynies A, Faivre J (2020) Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 72:965–981. https://doi.org/10.1002/hep.31092

    Article  CAS  PubMed  Google Scholar 

  25. Zhang D, Love T, Hao Y, Liu BL, Thung S, Fiel MI, Whitney-Miller CL, Liao X (2022) Tumor size, not small vessel invasion, predicts survival in patients with hepatocellular carcinoma. Am J Clin Pathol 158:70–80. https://doi.org/10.1093/ajcp/aqac001

    Article  PubMed  Google Scholar 

  26. Zhou YM, Yang JM, Li B, Yin ZF, Xu F, Wang B, Liu P, Li ZM (2008) Clinicopathologic characteristics of intrahepatic cholangiocarcinoma in patients with positive serum a-fetoprotein. World J Gastroenterol 14:2251–2254. https://doi.org/10.3748/wjg.14.2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu TH, Chen X, Zhang XH, Zhang EC, Sun CX (2021) Clinicopathological characteristics and prognostic factors for intrahepatic cholangiocarcinoma: a population-based study. Sci Rep 11:3990. https://doi.org/10.1038/s41598-021-83149-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jansson H, Villard C, Nooijen LE, Ghorbani P, Erdmann JI, Sparrelid E Prognostic influence of multiple hepatic lesions in resectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis

  29. Klimstra DS ZY, Komuta M (2019) Intrahepatic cholangiocarcinoma WHO Classification of Tumours Editorial Board. Digestive system tumours [Internet], 5th.edn. International Agency for Research on Cancer, Lyon (France), pp 254–259

  30. Chua D, Chiow AKH, Ang TL, Wang LM (2018) Malignant transformation arising within unusual and rare hepatic lesions: fibropolycystic disease form of ductal plate malformation and biliary adenofibroma. Int J Surg Pathol 26:542–550. https://doi.org/10.1177/1066896918758172

    Article  PubMed  Google Scholar 

  31. Schrader J, Gallimore MJ, Eisenhauer T, Isemer FE, Schoel G, Warneke G, Bruggemann M, Scheler F (1988) Parameters of the kallikrein-kinin, coagulation and fibrinolytic systems as early indicators of kidney transplant rejection. Nephron 48:183–189. https://doi.org/10.1159/000184909

    Article  CAS  PubMed  Google Scholar 

  32. Monu NR, Frey AB (2012) Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Invest 41(6-7):595–613. https://doi.org/10.3109/08820139.2012.673191

  33. Dunne RF, Figueroa N, Belt B, Findeis-Hosey J, Lunt M, Ye J, McMahon L, Baran A, Shubin A, Noel MS, Tejani MA, Hezel AF, Linehan D (2016) The role of myeloid derived suppressor cells in cholangiocarcinoma: a potential target for therapy. J Clin Oncol 34:273–273. https://doi.org/10.1200/jco.2016.34.4_suppl.273

    Article  Google Scholar 

  34. Lozada ME, Zhang N, Jin W, Wongjarupong N, Yang JD, Voss MM, Prasai K, Amakye DO, Harmsen WS, Chaudhary S, Bathe OF, Borad MJ, Patel TC, Gores GJ, Therneau TM, Roberts LR (2023) CS-iCCA, A New Clinically Based Staging System for Intrahepatic Cholangiocarcinoma: Establishment and External Validation. Am J Gastroenterol 118(12):2173–2183. https://doi.org/10.14309/ajg.0000000000002258

  35. Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, Park HG, Han SI, Kang HS (2018) Regulation of tumor progression by programmed necrosis. Oxid Med Cell Longev 2018:3537471. https://doi.org/10.1155/2018/3537471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karsch-Bluman A, Benny O (2020) Necrosis in the tumor microenvironment and its role in cancer recurrence. Adv Exp Med Biol 1225:89–98. https://doi.org/10.1007/978-3-030-35727-6_6

    Article  CAS  PubMed  Google Scholar 

  37. Yang S, Hu H, Hu Y, Dai Y, Zou R, Lv T, Li F (2023) Is tumor necrosis a clinical prognostic factor in hepato-biliary-pancreatic cancers? A Syst Rev Meta-Anal Cancer Med 12:11166–11176. https://doi.org/10.1002/cam4.5742

    Article  Google Scholar 

  38. Tsilimigras DI, Ejaz A, Cloyd J, Guglielmi A, Aldrighetti L, Weiss M, Bauer TW, Alexandrescu S, Poultsides GA, Maithel SK, Marques HP, Martel G, Pulitano C, Shen F, Soubrane O, Koerkamp BG, Endo I, Pawlik TM (2022) Tumor necrosis impacts prognosis of patients undergoing resection for T1 intrahepatic cholangiocarcinoma. Ann Surg Oncol. https://doi.org/10.1245/s10434-022-11462-y

    Article  PubMed  Google Scholar 

  39. Kojima S, Hisaka T, Midorikawa R, Naito Y, Akiba J, Tanigawa M, Yano H, Akagi Y, Okuda K (2020) Prognostic impact of desmoplastic reaction evaluation for intrahepatic cholangiocarcinoma. Anticancer Res 40(8):4749–4754. https://doi.org/10.21873/anticanres.14476

  40. Zhang X-f, Dong M, Pan Y-H, Chen J-N, Huang X-Q, Jin Y, Shao C-K (2017) Expression pattern of cancer-associated fibroblast and its clinical relevance in intrahepatic cholangiocarcinoma. Human Pathol 65:92–100. https://doi.org/10.1016/j.humpath.2017.04.014

    Article  CAS  Google Scholar 

  41. Scott A, Wong P, Melstrom LG (2023) Surgery and hepatic artery infusion therapy for intrahepatic cholangiocarcinoma. Surgery. https://doi.org/10.1016/j.surg.2023.01.019

    Article  PubMed  Google Scholar 

  42. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J, Investigators ABCT (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362:1273–1281. https://doi.org/10.1056/NEJMoa0908721

    Article  CAS  PubMed  Google Scholar 

  43. Oh DY, Lee KH, Lee DW, Yoon J, Kim TY, Bang JH, Nam AR, Oh KS, Kim JM, Lee Y, Guthrie V, McCoon P, Li W, Wu S, Zhang Q, Rebelatto MC, Kim JW (2022) Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-centre, phase 2 study. Lancet Gastroenterol Hepatol 7:522–532. https://doi.org/10.1016/S2468-1253(22)00043-7

    Article  PubMed  Google Scholar 

  44. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani P, Offerhaus GJA, Roa JC, Roberts LR, Gores GJ, Popescu I, Alexandrescu ST, Dima S, Fassan M, Simbolo M, Mafficini A, Capelli P, Lawlor RT, Ruzzenente A, Guglielmi A, Tortora G, de Braud F, Scarpa A, Jarnagin W, Klimstra D, Karchin R, Velculescu VE, Hruban RH, Vogelstein B, Kinzler KW, Papadopoulos N, Wood LD (2013) Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 45(12):1470-1473. https://doi.org/10.1038/ng.2813

  45. Li JH, Wu X, Ni X, Li YX, Xu L, Hao XY, Zhao W, Zhu XX, Yin XY (2023) Angiotensin receptor blockers retard the progression and fibrosis via inhibiting the viability of (AGTR1+) CAFs in intrahepatic cholangiocarcinoma. Clin Transl Med 13(3):e1213. https://doi.org/10.1002/ctm2.1213

Download references

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to the study design. IYC, RFD, and XL contributed to data collection and analysis of the results. IYC and XL wrote the first draft of the manuscript. RFD and XL edited and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyan Liao.

Ethics declarations

This study was approved by the Institutional Review Board at URMC (STUDY00003839).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The abstract of this study was presented at 2023 annual conference of United States and Canadian Academy of Pathology (USCAP), New Orleans, LA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, I.Y., Dunne, R.F. & Liao, X. Prognostic implications of tumor histology and microenvironment in surgically resected intrahepatic cholangiocarcinoma: a single institutional experience. Virchows Arch (2024). https://doi.org/10.1007/s00428-024-03787-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00428-024-03787-8

Keywords

Navigation