Skip to main content

Advertisement

Log in

Higher density of stromal M2 macrophages in breast ductal carcinoma in situ predicts recurrence

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Immune response can affect tumour progression and treatment outcome. This study investigated the potential of stromal macrophages around ductal carcinoma in situ (DCIS) in predicting recurrence and progression. CD68 and CD163 expression of macrophages in DCIS from 198 patients was determined by immunohistochemistry. Disease free survival (DFS), clinicopathological parameters and biomarker expression were correlated with the densities of both CD68+ and CD163+ macrophages. High CD68+ macrophage density was associated with high nuclear grade (p < 0.001), oestrogen receptor (ER) negativity (p = 0.029), progesterone receptor (PR) negativity (p = 0.008) and human epidermal growth factor receptor 2 (HER2) positivity (p < 0.001). High CD163+ macrophage density was associated with high nuclear grade (p = 0.003), microinvasion (p = 0.01), ER negativity (p < 0.001), PR negativity (p = 0.001), HER2 positivity (p = 0.001) and triple negativity (p = 0.022). DCIS with higher CD68+ macrophage density disclosed significantly worse DFS for ipsilateral invasive recurrence (p = 0.004) and is affirmed by multivariate Cox regression analysis (95% CI 1.126–5.102, HR = 2.397, p = 0.023). DCIS with higher CD163+ macrophage density showed significantly worse DFS for both recurrence (p = 0.001) and ipsilateral invasive recurrence (p = 0.001). These findings, for CD163+ macrophage density, were affirmed by multivariate Cox regression analysis respectively for both recurrence (95% CI 1.210–2.293, HR = 1.880, p = 0.005) and ipsilateral invasive recurrence (95% CI 1.122–5.176, HR = 2.410, p = 0.024). This study demonstrated that DCIS with higher macrophage density was associated with poorer prognostic parameters, while DCIS with higher CD163+ macrophage density predicted both  recurrence and ipsilateral invasive recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Koh VC, Lim JC, Thike AA, Cheok PY, Thu MM, Tan VK, Tan BK, Ong KW, Ho GH, Tan WJ, Tan Y, Salahuddin AS, Busmanis I, Chong AP, Iqbal J, Thilagaratnam S, Wong JS, Tan PH (2015) Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat 152(2):293–304. https://doi.org/10.1007/s10549-015-3472-6

    Article  PubMed  Google Scholar 

  2. Lee RJ, Vallow LA, McLaughlin SA, Tzou KS, Hines SL, Peterson JL (2012) Ductal carcinoma in situ of the breast. Int J Surg Oncol 2012:12. https://doi.org/10.1155/2012/123549

    Article  Google Scholar 

  3. Jara-Lazaro AR, Thilagaratnam S, Tan PH (2010) Breast cancer in Singapore: some perspectives. Breast Cancer (Tokyo, Japan) 17(1):23–28. https://doi.org/10.1007/s12282-009-0155-3

    Article  Google Scholar 

  4. Tan PH, Chiang GS, Ng EH, Low SC, Ng FC (1999) Screen detected breast cancer in an Asian population: pathological findings of the Singapore breast screening project. Breast (Edinburgh, Scotland) 8(3):120–125. https://doi.org/10.1054/brst.1999.0038

    Article  CAS  Google Scholar 

  5. Tan PH, Chuah KL, Chiang G, Wong CY, Dong F, Bay BH (2002) Correlation of p53 and cerbB2 expression and hormonal receptor status with clinicopathologic parameters in ductal carcinoma in situ of the breast. Oncol Rep 9(5):1081–1086

    CAS  PubMed  Google Scholar 

  6. Pinder SE, Duggan C, Ellis IO, Cuzick J, Forbes JF, Bishop H, Fentiman IS, George WD (2010) A new pathological system for grading DCIS with improved prediction of local recurrence: results from the UKCCCR/ANZ DCIS trial. Br J Cancer 103(1):94–100. https://doi.org/10.1038/sj.bjc.6605718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bobrow LG, Happerfield LC, Gregory WM, Millis RR (1995) Ductal carcinoma in situ: assessment of necrosis and nuclear morphology and their association with biological markers. J Pathol 176(4):333–341. https://doi.org/10.1002/path.1711760404

    Article  CAS  PubMed  Google Scholar 

  8. Mommers EC, Page DL, Dupont WD, Schuyler P, Leonhart AM, Baak JP, Meijer CJ, van Diest PJ (2001) Prognostic value of morphometry in patients with normal breast tissue or usual ductal hyperplasia of the breast. Int J Cancer 95(5):282–285

    Article  CAS  PubMed  Google Scholar 

  9. Nofech-Mozes S, Spayne J, Rakovitch E, Hanna W (2005) Prognostic and predictive molecular markers in DCIS: a review. Adv Anat Pathol 12(5):256–264

    Article  CAS  PubMed  Google Scholar 

  10. Shoker BS, Sloane JP (1999) DCIS grading schemes and clinical implications. Histopathology 35(5):393–400

    Article  CAS  PubMed  Google Scholar 

  11. Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20(2):241–246. https://doi.org/10.1016/j.coi.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim ST, Jeong H, Woo OH, Seo JH, Kim A, Lee ES, Shin SW, Kim YH, Kim JS, Park KH (2013) Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol 36(3):224–231. https://doi.org/10.1097/COC.0b013e3182467d90

    Article  CAS  PubMed  Google Scholar 

  13. Knopfelmacher A, Fox J, Lo Y, Shapiro N, Fineberg S (2015) Correlation of histopathologic features of ductal carcinoma in situ of the breast with the oncotype DX DCIS score. Mod Pathol 28(9):1167–1173. https://doi.org/10.1038/modpathol.2015.79

    Article  CAS  PubMed  Google Scholar 

  14. Lal A, Chan L, Devries S, Chin K, Scott GK, Benz CC, Chen YY, Waldman FM, Hwang ES (2013) FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat 139(2):381–390. https://doi.org/10.1007/s10549-013-2556-4

    Article  CAS  PubMed  Google Scholar 

  15. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA (2014) The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 148(3):467–476. https://doi.org/10.1007/s10549-014-3185-2

    Article  CAS  PubMed  Google Scholar 

  16. Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36(4):229–239. https://doi.org/10.1016/j.it.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  17. Campbell MJ, Baehner F, O'Meara T, Ojukwu E, Han B, Mukhtar R, Tandon V, Endicott M, Zhu Z, Wong J, Krings G, Au A, Gray JW, Esserman L (2017) Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat 161(1):17–28. https://doi.org/10.1007/s10549-016-4036-0

    Article  CAS  PubMed  Google Scholar 

  18. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29(3):249–258. https://doi.org/10.1038/modpathol.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Weaver D, Muss H, Plaut K (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1):47–62. https://doi.org/10.1007/s10549-008-9982-8

    Article  CAS  PubMed  Google Scholar 

  20. Yeong J, Thike AA, Tan PH, Iqbal J (2017) Identifying progression predictors of breast ductal carcinoma in situ. J Clin Pathol 70(2):102–108. https://doi.org/10.1136/jclinpath-2016-204154

    Article  CAS  PubMed  Google Scholar 

  21. Celis JE, Gromova I, Cabezon T, Gromov P, Shen T, Timmermans-Wielenga V, Rank F, Moreira JM (2007) Identification of a subset of breast carcinomas characterized by expression of cytokeratin 15: relationship between CK15+ progenitor/amplified cells and pre-malignant lesions and invasive disease. Mol Oncol 1(3):321–349. https://doi.org/10.1016/j.molonc.2007.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ (2006) Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8(5):R61. https://doi.org/10.1186/bcr1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teo NB, Shoker BS, Jarvis C, Martin L, Sloane JP, Holcombe C (2003) Angiogenesis and invasive recurrence in ductal carcinoma in situ of the breast. Eur J Cancer 39(1):38–44

    Article  PubMed  Google Scholar 

  24. Rice A, Quinn CM (2002) Angiogenesis, thrombospondin, and ductal carcinoma in situ of the breast. J Clin Pathol 55(8):569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whiteside T (2013) Immune responses to cancer: are they potential biomarkers of prognosis? Front Oncol 3:107. https://doi.org/10.3389/fonc.2013.00107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen XY, Yeong J, Thike AA, Bay BH, Tan PH (2019) Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 177:17–27. https://doi.org/10.1007/s10549-019-05272-2

    Article  PubMed  Google Scholar 

  27. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  28. Thompson ED, Zahurak M, Murphy A, Cornish T, Cuka N, Abdelfatah E, Yang S, Duncan M, Ahuja N, Taube JM, Anders RA, Kelly RJ (2017) Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 66(5):794–801. https://doi.org/10.1136/gutjnl-2015-310839

    Article  CAS  PubMed  Google Scholar 

  29. Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, González LO, López-Muñiz A, Vizoso FJ (2012) Impact of CD68/(CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One 7(12):e52796. https://doi.org/10.1371/journal.pone.0052796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee AH, Happerfield LC, Bobrow LG, Millis RR (1997) Angiogenesis and inflammation in ductal carcinoma in situ of the breast. J Pathol 181(2):200–206. https://doi.org/10.1002/(sici)1096-9896(199702)181:2<200::Aid-path726>3.0.Co;2-k

    Article  CAS  PubMed  Google Scholar 

  31. Lee AH, Dublin EA, Bobrow LG (1999) Angiogenesis and expression of thymidine phosphorylase by inflammatory and carcinoma cells in ductal carcinoma in situ of the breast. J Pathol 187(3):285–290. https://doi.org/10.1002/(sici)1096-9896(199902)187:3<285::Aid-path238>3.0.Co;2-r

    Article  CAS  PubMed  Google Scholar 

  32. Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS (2016) Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron 9(1):1–11. https://doi.org/10.1007/s12307-015-0174-x

    Article  CAS  PubMed  Google Scholar 

  33. Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583–1591. https://doi.org/10.1038/bjc.2017.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 8(11):e80908. https://doi.org/10.1371/journal.pone.0080908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281(1):51–61. https://doi.org/10.1016/j.cellimm.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  36. Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, Vanham G, Noel W, Bogaert P, Boonefaes T, Kindt A, Van den Bergh R, Leenen PJ, De Baetselier P, Ghassabeh GH (2005) Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 77(3):321–327. https://doi.org/10.1189/jlb.0304212

    Article  CAS  PubMed  Google Scholar 

  37. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  38. Tang X (2013) Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 332(1):3–10. https://doi.org/10.1016/j.canlet.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  39. Sica A, Saccani A, Mantovani A (2002) Tumor-associated macrophages: a molecular perspective. Int Immunopharmacol 2(8):1045–1054

    Article  CAS  PubMed  Google Scholar 

  40. Sakai Y, Honda M, Fujinaga H, Tatsumi I, Mizukoshi E, Nakamoto Y, Kaneko S (2008) Common transcriptional signature of tumor-infiltrating mononuclear inflammatory cells and peripheral blood mononuclear cells in hepatocellular carcinoma patients. Cancer Res 68(24):10267–10279. https://doi.org/10.1158/0008-5472.Can-08-0911

    Article  CAS  PubMed  Google Scholar 

  41. Holness C, Simmons D (1993) Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81(6):1607–1613

    Article  CAS  PubMed  Google Scholar 

  42. Medrek C, Pontén F, Jirström K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306–306. https://doi.org/10.1186/1471-2407-12-306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahmoud SMA, Lee AHS, Paish EC, Macmillan RD, Ellis IO, Green AR (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65(2):159–163. https://doi.org/10.1136/jclinpath-2011-200355

    Article  CAS  PubMed  Google Scholar 

  44. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. https://doi.org/10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  45. Alkhateeb AA, Han B, Connor JR (2013) Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat 137(3):733–744. https://doi.org/10.1007/s10549-012-2405-x

    Article  CAS  PubMed  Google Scholar 

  46. Gatenbee C, West J, Baker AM, Guljar N, Jones L, Graham TA, Robertson-Tessi M, Anderson ARA (2019) Macrophage-mediated immunoediting drives ductal carcinoma evolution: space is the game changer. bioRxiv:594598. doi:https://doi.org/10.1101/594598

  47. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9(16):3256–3276. https://doi.org/10.4161/cc.9.16.12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A, Sotgia F (2010) Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10(6):537–542. https://doi.org/10.4161/cbt.10.6.13370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9(17):3515–3533. https://doi.org/10.4161/cc.9.17.12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bae JY, Ahn SJ, Han W, Noh DY (2007) Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines. J Cell Biochem 101(4):1038–1045. https://doi.org/10.1002/jcb.21155

    Article  CAS  PubMed  Google Scholar 

  51. Ding J, Guo C, Hu P, Chen J, Liu Q, Wu X, Cao Y, Wu J (2016) CSF1 is involved in breast cancer progression through inducing monocyte differentiation and homing. Int J Oncol 49(5):2064–2074. https://doi.org/10.3892/ijo.2016.3680

    Article  CAS  PubMed  Google Scholar 

  52. Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen P-L, Lauttia S, Tynninen O, Joensuu H, Heymann D, Määttä JA (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17(1):101. https://doi.org/10.1186/s13058-015-0621-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bogels M, Braster R, Nijland PG, Gul N, van de Luijtgaarden W, Fijneman RJ, Meijer GA, Jimenez CR, Beelen RH, van Egmond M (2012) Carcinoma origin dictates differential skewing of monocyte function. Oncoimmunology 1(6):798–809. https://doi.org/10.4161/onci.20427

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shabo I, Stal O, Olsson H, Dore S, Svanvik J (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123(4):780–786. https://doi.org/10.1002/ijc.23527

    Article  CAS  PubMed  Google Scholar 

  55. Sumer H, Nicholls C, Pinto AR, Indraharan D, Liu J, Lim ML, Liu JP, Verma PJ (2010) Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma 119(2):167–176. https://doi.org/10.1007/s00412-009-0245-1

    Article  PubMed  Google Scholar 

  56. Rappa G, Mercapide J, Lorico A (2012) Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol 180(6):2504–2515. https://doi.org/10.1016/j.ajpath.2012.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding J, Jin W, Chen C, Shao Z, Wu J (2012) Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One 7(7):e41942. https://doi.org/10.1371/journal.pone.0041942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the SingHealth Foundation (SHF) Research Grant, SHF/FG668S/2015, awarded to Dr. Aye Aye Thike.

Author information

Authors and Affiliations

Authors

Contributions

AT conceived and directed the study. AT, PT and BB supervised the research. VK prepared tissue sections, performed IHC and collated data. AT and NM performed immunohistochemical scoring. AT and XC interpreted data and performed biostatistical analysis. PT and BB contributed to the scientific content of the study. XC drafted the manuscript with the assistance and final approval of all authors.

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

This study was approved by The SingHealth Centralized Institutional Review Board (CIRB), Ref No. 2016/2393.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XY., Thike, A.A., Md Nasir, N.D. et al. Higher density of stromal M2 macrophages in breast ductal carcinoma in situ predicts recurrence. Virchows Arch 476, 825–833 (2020). https://doi.org/10.1007/s00428-019-02735-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02735-1

Keywords

Navigation