Skip to main content

Advertisement

Log in

Lung cancer as a paradigm for precision oncology in solid tumours

  • Invited Annual Review Issue
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the western world. However, the combination of molecular genotyping and subsequent systematic treatment of decoded target structures is a prime example of precision oncology in solid tumours. In this review, current targets of approved therapeutics and potential targets in clinical and preclinical trials are outlined. Furthermore, immune checkpoint inhibitors, as promising new therapeutic options, which have already been applied successfully in cases of lung cancer, are introduced. A major issue of targeted treatment of lung tumours is the persistent development of resistance. The underlying mechanisms and established and potentially applicable alternative therapeutic approaches are described. In this process of precision oncology, immunohistochemistry, fluorescence in situ hybridization, and parallel sequencing are crucial diagnostic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson A, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG (2017) Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. doi:10.1158/2159-8290.CD-16-1237

  2. Bir F, Çeliker D, Evyapan BF, Yaren A, Edirne T (2016) New immunohistochemical markers in the differential diagnosis of nonsmall cell lung carcinoma. Turk J Med Sci 46(6):1854–1861. doi:10.3906/sag-1501-68

    Article  PubMed  Google Scholar 

  3. Wolf J (2017) Network Genomic Medicine. http://www.ngm-cancer.com/. Accessed 10 April 2017

  4. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M, College of American Pathologists International Association for the Study of Lung Cancer and Association for Molecular Pathology (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn 15(4):415–453. doi:10.1016/j.jmoldx.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, Kerr K, Popat S, Reck M, Senan S, Simo GV, Vansteenkiste J, Peters S, Guidelines Committee ESMO (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):v1–v27

    Article  CAS  PubMed  Google Scholar 

  6. American Cancer Society (2016) Cancer facts & figures 2016. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/index. Accessed 13 December 2016

  7. Seidel D et al (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5(209):209ra153. doi:10.1126/scitranslmed.3006802

    Google Scholar 

  8. Dearden S, Stevens J, Wu YL, Blowers D (2013) Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol 24:2371–2376. doi:10.1093/annonc/mdt205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vassella E, Langsch S, Dettmer MS, Schlup C, Neuenschwander M, Frattini M, Gugger M, Schäfer SC (2015) Molecular profiling of lung adenosquamous carcinoma: hybrid or genuine type? Oncotarget 6(27):23905–23916. doi:10.18632/oncotarget.4163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  CAS  PubMed  Google Scholar 

  11. Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4:36–54. doi:10.3978/j.issn.2218-6751.2014.05.01

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenhalgh J, Dwan K, Boland A et al (2016) First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst Rev 5:CD010383. doi:10.1002/14651858.CD010383.pub2

    Google Scholar 

  13. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    Article  CAS  PubMed  Google Scholar 

  14. Mano H (2008) Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci 99(12):2349–2355. doi:10.1111/j.1349-7006.2008.00972.x

    Article  CAS  PubMed  Google Scholar 

  15. Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177. doi:10.1056/NEJMoa1408440

    Article  PubMed  CAS  Google Scholar 

  16. Lin E, Li L, Guan Y et al (2009) Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 7(9):1466–1476

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki T, Rodig SJ, Chirieac LR, Jänne PA (2010) The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer:1–8. doi:10.1016/j.ejca.2010.04.002

  18. Camidge DR, Kono SA, Flacco A, Tan A-C, Doebele RC, Zhou Q et al (2010) Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res Off J Am Assoc Cancer Res 16(22):5581–5590. doi:10.1158/1078-0432.CCR-10-0851

    Article  CAS  Google Scholar 

  19. Gainor JF, Varghese AM, Ou S-HI, Kabraji S, Awad MM, Katayama R et al (2013) ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 19(15):4273–4281. doi:10.1158/1078-0432.CCR-13-0318

    Article  CAS  Google Scholar 

  20. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378–381. doi:10.1038/nm.2658

    Article  CAS  PubMed  Google Scholar 

  21. Birchmeier C, O'Neill K, Riggs M et al (1990) Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc Natl Acad Sci U S A 87:4799–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Birchmeier C, Sharma S, Wigler M (1987) Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 84:9270–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Charest A, Lane K, McMahon K et al (2003) Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 37:58–71. doi:10.1002/gcc.10207

    Article  CAS  PubMed  Google Scholar 

  24. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203. doi:10.1016/j.cell.2007.11.025

    Article  CAS  PubMed  Google Scholar 

  25. Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 19:4040–4045. doi:10.1158/1078-0432.CCR-12-2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870. doi:10.1200/JCO.2011.35.6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gainor JF, Shaw AT (2013) Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 18:865–875. doi:10.1634/theoncologist.2013-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson SL, Su P-F (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311(19):1998–2006. doi:10.1001/jama.2014.3741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Network TCGAR (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511):543–550. doi:10.1038/nature13385

    Article  CAS  Google Scholar 

  30. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371(21):1963–1971. doi:10.1056/NEJMoa1406766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F (2011) Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29(26):3574–3579. doi:10.1200/JCO.2011.35.9638

    Article  CAS  PubMed  Google Scholar 

  32. Sen B, Peng S, Tang X, Erickson HS, Galindo H, Mazumdar T, Stewart DJ, Wistuba I, Johnson FM (2012) Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med 4(136):136ra70. doi:10.1126/scitranslmed.3003513

    Article  PubMed  CAS  Google Scholar 

  33. Peters S, Michielin O, Zimmermann S (2013) Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol 31:e341–e344. doi:10.1200/JCO.2012.47.6143

    Article  PubMed  Google Scholar 

  34. Robinson SD, O'Shaughnessy JA, Cowey CL et al (2014) BRAF V600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer 85:326–330. doi:10.1016/j.lungcan.2014.05.009

    Article  PubMed  Google Scholar 

  35. Planchard D, Kim TM, Mazieres J et al (2016a) Dabrafenib in patients with BRAFV600E -positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 17:642–650. doi:10.1016/S1470-2045(16)00077-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Planchard D et al (2016b) Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17:984–993. doi:10.1016/S1470-2045(16)30146-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heinmoller P, Gross C, Beyser K, Schmidtgen C, Maass G, Pedrocchi M, Ruschoff J (2003) HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res 9(14):5238–5243

    PubMed  Google Scholar 

  38. Gatzemeier U, Groth G, Butts C, Van Zandwijk N, Shepherd F, Ardizzoni A, Barton C, Ghahramani P, Hirsh V (2004) Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol 15(1):19–27

    Article  CAS  PubMed  Google Scholar 

  39. Krug LM, Miller VA, Patel J, Crapanzano J, Azzoli CG, Gomez J, Kris MG, Heelan RT, Pizzo B, Tyson L, Sheehan C, Ross JS, Venkatraman E (2005) Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced nonsmall cell lung carcinoma. Cancer 104(10):2149–2155. doi:10.1002/cncr.21428

    Article  CAS  PubMed  Google Scholar 

  40. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65(5):1642–1646. doi:10.1158/0008-5472.CAN-04-4235

    Article  CAS  PubMed  Google Scholar 

  41. Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, Carpenter G, Gazdar AF, Muthuswamy SK, Arteaga CL (2006) HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10(1):25–38. doi:10.1016/j.ccr.2006.05.023

    Article  PubMed  CAS  Google Scholar 

  42. De Greve J, Teugels E, Geers C, Decoster L, Galdermans D, De Mey J, Everaert H, Umelo I, In’t Veld P, Schallier D (2012) Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 76(1):123–127. doi:10.1016/j.lungcan.2012.01.008

    Article  PubMed  Google Scholar 

  43. Suzawa K, Toyooka S, Sakaguchi M, Morita M, Yamamoto H, Tomida S, Ohtsuka T, Watanabe M, Hashida S, Maki Y, Soh J, Asano H, Tsukuda K, Miyoshi S (2016) Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancer harboring HER2 oncogene alterations. Cancer Sci 107:45–52. doi:10.1111/cas.12845

    Article  CAS  PubMed  Google Scholar 

  44. Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O’Connell J, Taylor I, Zahng H, Arcila ME, Goödberg Z, Jänne PA (2015) Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol 26:1421–1427. doi:10.1093/annonc/mdv186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seki T, Hagiya M, Shimonishi M, Nakamura T, Shimizu S (1991) Organization of the human hepatocyte growth factor-encoding gene. Gene 102(2):213–219

    Article  CAS  PubMed  Google Scholar 

  46. Krishnaswamy S, Kanteti R, Duke-Cohan JS, Loganathan S, Liu W, Ma PC, Sattler M, Singleton PA, Ramnath N, Innocenti F, Nicolae DL, Ouyang Z, Liang J, Minna J, Kozloff MF, Ferguson MK, Natarajan V, Wang YC, Garcia JG, Vokes EE, Salgia R (2009) Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res 15(18):5714–5723. doi:10.1158/1078-0432.CCR-09-0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R (2006) Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66(1):283–289. doi:10.1158/0008-5472.CAN-05-2749

    Article  CAS  PubMed  Google Scholar 

  48. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T (2009) Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 4(1):5–11. doi:10.1097/JTO.0b013e3181913e0e

    Article  PubMed  Google Scholar 

  49. Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y (2008) Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci 99(11):2280–2285. doi:10.1111/j.1349-7006.2008.00916.x

    Article  CAS  PubMed  Google Scholar 

  50. Schildhaus HU, Schultheis AM, Ruschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, Schulte W, Ko YD, Schlesinger A, Bos M, Gardizi M, Engel-Riedel W, Brockmann M, Serke M, Gerigk U, Hekmat K, Frank KF, Reiser M, Schulz H, Kruger S, Stoelben E, Zander T, Wolf J, Buettner R (2015) MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung. Clin Cancer Res 21(4):907–915. doi:10.1158/1078-0432.CCR-14-0450

    Article  CAS  PubMed  Google Scholar 

  51. Caparica R, Yen CT, Coudry R, Ou SHI, Varella-Garcia M, Camidge DR, De Castro G (2016) Responses to crizotinib can occur in high-level MET-amplified non-small cell lung cancer independent of MET exon 14 alterations. J Thorac Oncol in press

  52. Jenkins RW, Oxnard GR, Elkin S, Sullivan EK, Carter JL, Barbie DA (2015) Response to crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation. Clin Lung Cancer 16(5):e101–e104. doi:10.1016/j.cllc.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M et al (2015) Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 5(8):850–859. doi:10.1158/2159-8290.CD-15-0285

    Article  CAS  PubMed  Google Scholar 

  54. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, Ladanyi M (2015) Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 5(8):842–849. doi:10.1158/2159-8290.CD-14-1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Jänne PA, Verma S, Christensen J, Hammerman PS, Sholl LM (2016) MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol 34(7):721–730. doi:10.1200/JCO.2015.63.4600

    Article  CAS  PubMed  Google Scholar 

  56. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS (2012) A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 22(3):436–445. doi:10.1101/gr.133645.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375–377. doi:10.1038/nm.2644

    Article  CAS  PubMed  Google Scholar 

  58. Michels S, Scheel AH, Scheffler M, Schultheis AM, Gautschi O, Aebersold F, Diebold J, Pall G, Rothschild S, Bubendorf L, Hartmann W, Heukamp L, Schildhaus HU, Fassunke J, Ihle MA, Künstlinger H, Heydt C, Fischer R, Nogovà L, Mattonet C, Hein R, Adams A, Gerigk U, Schulte W, Lüders H, Grohé C, Graeven U, Müller-Naendrup C, Draube A, Kambartel KO, Krüger S, Schulze-Olden S, Serke M, Engel-Riedel W, Kaminsky B, Randerath W, Merkelbach-Bruse S, Büttner R, Wolf J (2016) Clinicopathological characteristics of RET rearranged lung cancer in European patients. J Thorac Oncol 11(1):122–127. doi:10.1016/j.jtho.2015.09.016

    Article  PubMed  Google Scholar 

  59. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H (2012) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 30(35):4352–4359. doi:10.1200/JCO.2012.44.1477

    Article  CAS  PubMed  Google Scholar 

  60. Lee MS, Kim RN, I H, Oh DY, Song JY, Noh KW, Kim YJ, Yang JW, Lira ME, Lee CH, Lee MK, Kim YD, Mao M, Han J, Kim J, Choi YL (2016) Identification of a novel partner gene, KIAA1217, fused to RET: functional characterization and inhibitor sensitivity of two isoforms in lung adenocarcinoma. Oncotarget 7(24):36101–36114. doi:10.18632/oncotarget.9137

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, Sakamot H (2014) Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol. Cancer Ther 13:2910–2918. doi:10.1158/1535-7163.MCT-14-0274

    Article  CAS  Google Scholar 

  62. Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, Stephens P, Ross J, Miller V, Ginsberg M, Zakowski MF et al (2013) Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3:630–635. doi:10.1158/2159-8290.CD-13-0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Falchook GS, Ordóñez NG, Bastida CC, Stephens PJ, Miller VA, Gaido L, Jackson T, Karp DD (2014) Effect of the RET inhibitor vandetanib in a patient with RET fusion-positive metastatic non-small-cell lung cancer. J Clin Oncol 34(15):e141–e144. doi:10.1200/JCO.2013.50.5016

    Article  PubMed  CAS  Google Scholar 

  64. Gautschi O, Zander T, Keller FA, Strobel K, Hirschmann A, Aebi S, Diebold J (2013) A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol 8:e43–e44. doi:10.1097/JTO.0b013e31828a4d07

    Article  PubMed  Google Scholar 

  65. Farago AF et al (2015) Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol 10:1670–1674. doi:10.1097/01.JTO.0000473485.38553.f0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaishnavi A et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19:1469–1472. doi:10.1038/nm.3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ardini E et al (2016) Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther 15:628–639. doi:10.1158/1535-7163.MCT-15-0758

    Article  CAS  PubMed  Google Scholar 

  68. de Braud F et al (2015) Alka-372–001: first-in-human, phase I study of entrectinib—an oral pan-trk, ROS1, and ALK inhibitor—in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 33:suppl; abstr 2517

  69. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A et al (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5(10):1049–1057. doi:10.1158/2159-8290.CD-15-0443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, Ullrich RT, Menon R, Maier S, Soltermann A, Moch H, Wagener P, Fischer F, Heynck S, Koker M, Schöttle J, Leenders F, Gabler F, Dabow I, Querings S, Heukamp LC, Balke-Want H, Ansén S, Rauh D, Baessmann I, Altmüller J, Wainer Z, Conron M, Wright G, Russell P, Solomon B, Brambilla E, Brambilla C, Lorimier P, Sollberg S, Brustugun OT, Engel-Riedel W, Ludwig C, Petersen I, Sänger J, Clement J, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D, Cappuzzo F, Ligorio C, Damiani S, Hallek M, Beroukhim R, Pao W, Klebl B, Baumann M, Buettner R, Ernestus K, Stoelben E, Wolf J, Nürnberg P, Perner S, Thomas RK (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2(62):62ra93. doi:10.1126/scitranslmed.3001451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. doi:10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  72. Hibi M, Kaneda H, Tanizaki J, Sakai K, Togashi Y, Terashima M, De Velasco MA, Fujita Y, Banno E, Nakamura Y, Takeda M, Ito A, Mitsudomi T, Nakagawa K, Okamoto I, Nishio K (2016) FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci 107(11):1667–1676. doi:10.1111/cas.13071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim SH, Sun JM, Choi YL, Kim HR, Ahn S, Lee JY, Lee SH, Ahn JS, Park K, Kim JH, Cho BC, Ahn MJ (2016) Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: a single-arm, phase 2 study. Cancer 122(19):3024–3031. doi:10.1002/cncr.30135

    Article  CAS  PubMed  Google Scholar 

  74. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. doi:10.1056/NEJMoa1507643

    Article  CAS  PubMed  Google Scholar 

  75. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. doi:10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garon EB (2015) Current perspectives in immunotherapy for non-small cell lung cancer. Semin Oncol 42(Suppl 2):S11–S18. doi:10.1053/j.seminoncol.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  77. Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. doi:10.1056/NEJMoa1606774

  78. Socinski MA, Creelan B, Horn L et al (2016) CheckMate 026: a phase 3 trial of nivolumab vs investigator’s choice of platinum-based doublet chemotherapy as first-line therapy for stage IV/recurrent programmed death ligand 1-positive NSCLC. Presented at ESMO Congress 2016, Copenhagen; October 7–11, 2016

  79. Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846. doi:10.1016/S0140-6736(16)00587-0

    Article  CAS  PubMed  Google Scholar 

  80. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scheel AH, Dietel M, Heukamp LC et al (2016) Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol 29(10):1165–1172. doi:10.1038/modpathol.2016.117

    Article  CAS  PubMed  Google Scholar 

  82. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. doi:10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246. doi:10.1016/S1470-2045(11)70393-X

    Article  CAS  PubMed  Google Scholar 

  84. Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334. doi:10.1200/JCO.2012.44.2806

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Fujimoto J, Zhang J et al (2014) Intratumor heterogeneity in localized lung adenocarcinomas delineated by multi-region sequencing. Science 346:256. doi:10.1126/science.1256930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21:1258–1266. doi:10.1158/1078-0432.CCR-14-1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Suda K, Murakami I, Sakai K et al (2015) Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer. Sci Rep 5:14447. doi:10.1038/srep14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz C, Cantatini M, Ynag JCH, Barrett JC, Jänne PA (2016) Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 34:3375–3382

    Article  CAS  PubMed  Google Scholar 

  89. Yu HA, Arcila ME, Rekhtman N et al (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 19:2240–2247. doi:10.1158/1078-0432.CCR-12-2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu HA, Spira AI, Horn L et al (2016) Antitumor activity of ASP8273 300 mg in subjects with EGFR mutation-positive non-small cell lung cancer: interim results from an ongoing phase 1 study. J Clin Oncol ASCO Annual Meeting Abstracts 34 (15 Suppl): abstract 9050

  91. Ortiz-Cuaran S, Scheffler M, Plenker D, Dahmen L, Scheel AH, Fernandez-Cuesta L, Meder L, Lovly CM, Persigehl T, Merkelbach-Bruse S, Bos M, Michels S, Fischer R, Albus K, König K, Schildhaus HU, Fassunke J, Ihle MA, Pasternack H, Heydt C, Becker C, Altmüller J, Ji H, Müller C, Florin A, Heuckmann JM, Nuernberg P, Ansén S, Heukamp LC, Berg J, Pao W, Peifer M, Buettner R, Wolf J, Thomas RK, Sos ML (2016) Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res 22(19):4837–4847. doi:10.1158/1078-0432.CCR-15-1915

    Article  CAS  PubMed  Google Scholar 

  92. Cortot AB, Jänne PA (2014) Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 23:356–366. doi:10.1183/09059180.00004614

    Article  PubMed  Google Scholar 

  93. Chabon JJ, Simmons AD, Lovejoy AF et al (2016) Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 7:11815. doi:10.1038/ncomms11815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Planchard D, Loriot Y, Andre F et al (2015) EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol 26:2073–2078. doi:10.1093/annonc/mdv319

    Article  CAS  PubMed  Google Scholar 

  95. Nanjo S, Yamada T, Nishihara H et al (2013) Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors. PLoS One 8:e84700. doi:10.1371/journal.pone.0084700 eCollection 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739. doi:10.1056/NEJMoa1007478

    Article  CAS  PubMed  Google Scholar 

  97. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong KK, Lindeman N, Gray NS, Rodig SJ, Janne PA (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060. doi:10.1158/0008-5472.CAN-11-1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482. doi:10.1158/1078-0432.CCR-11-2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lungcancers. Sci Transl Med 4(120):120ra117. doi:10.1126/scitranslmed.3003316

    Article  CAS  Google Scholar 

  100. Crino L, Ahn MJ, De Marinis F, Groen HJM, Wakelee H, Hida T, Mok T et al (2016) Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non–small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol 34:2866–2873. doi:10.1200/JCO.2015.65.5936

    Article  CAS  PubMed  Google Scholar 

  101. Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, Camidge DR et al (2016) Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol 17:234–242. doi:10.1016/S1470-2045(15)00488-X

    Article  CAS  PubMed  Google Scholar 

  102. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R et al (2016) First- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6(10):1118–1133. doi:10.1158/2159-8290.CD-16-0596

    Article  CAS  PubMed  Google Scholar 

  103. Drilon A et al (2016) A novel crizotinib-resistant solvent front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res 22:2351–2358. doi:10.1158/1078-0432.CCR-15-2013

    Article  CAS  PubMed  Google Scholar 

  104. Cargnelutti M et al (2015) Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget 6:5182–5194. doi:10.18632/oncotarget.3311

    Article  PubMed  Google Scholar 

  105. Katayama R et al (2015) Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res 21:166–174. doi:10.1158/1078-0432.CCR-14-1385

    Article  CAS  PubMed  Google Scholar 

  106. Solomon BJ et al (2016) Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ and ROS1+ non-small cell lung cancer (NSCLC). J Clin Oncol 34:suppl; abstr 9009

  107. Chong CR et al (2016) Identification of existing drugs that effectively target NTRK1- and ROS1-rearrangements in lung cancer. Clin Cancer Res. doi:10.1158/ 1078-0432.CRR-15-1601

  108. Marchetti A, Di Lorito A, Pace MV et al (2016) ALK protein analysis by IHC staining after recent regulatory changes: a comparison of two widely used approaches, revision of the literature, and a new testing algorithm. J Thorac Oncol 11(4):487–495. doi:10.1016/j.jtho.2015.12.111

    Article  PubMed  Google Scholar 

  109. von Laffert M, Schirmacher P, Warth A et al (2016) Statement of the German Society for Pathology and the working group thoracic oncology of the working group oncology/German Cancer Society on ALK testing in NSCLC: immunohistochemistry and/or FISH? Pathologe 37:187–192. doi:10.1007/s00292-016-0152-1

    Article  Google Scholar 

  110. Heydt C, Kostenko A, Merkelbach-Bruse S, Wolf J, Büttner R (2016) ALK evaluation in the world of multiplex testing: Network Genomic Medicine (NGM): the Cologne model for implementing personalised oncology. Ann Oncol 27(Suppl 3):iii25–iii34. doi:10.1093/annonc/mdw303

    Article  PubMed  Google Scholar 

  111. Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L et al (2015) Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist 20:316–322. doi:10.1634/theoncologist.2014-0389

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cabillic F, Gros A, Dugay F et al (2014) Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol 9:295–306. doi:10.1097/JTO.0000000000000072

    Article  CAS  PubMed  Google Scholar 

  113. Savic S, Bode B, Diebold J et al (2013) Detection of ALK-positive non-small-cell lung cancers on cytological specimens: high accuracy of immunocytochemistry with the 5A4 clone. J Thorac Oncol 8:1004–1011. doi:10.1097/JTO.0b013e3182936ca9

    Article  CAS  PubMed  Google Scholar 

  114. von Laffert M, Stenzinger A, Hummel M et al (2015) ALK-FISH borderline cases in non-small cell lung cancer: implications for diagnostics and clinical decision making. Lung Cancer 90(3):465–471. doi:10.1016/j.lungcan.2015.09.022

    Article  Google Scholar 

  115. Bubendorf L, Büttner R, Al-Dayel F, Dietel M, Elmberger G, Kerr K, López-Ríos F, Marchetti A, Öz B, Pauwels P, Penault-Llorca F, Rossi G, Ryška A, Thunnissen E (2016) Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch 469(5):489–503. doi:10.1007/s00428-016-2000-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sholl LM, Sun H, Butaney M, Zhang C, Lee C, Janne PA, Rodig SJ (2013) ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol 37(9):1441–1449. doi:10.1097/PAS.0b013e3182960fa7

    Article  PubMed  Google Scholar 

  117. Yoshida A, Tsuta K, Wakai S, Arai Y, Asamura H, Shibata T, Furuta K, Kohno T, Kushima R (2014) Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 27(5):711–720. doi:10.1038/modpathol.2013.192

    Article  CAS  PubMed  Google Scholar 

  118. Takeuchi K, Choi YL, Togashi Y et al (2009) KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 15:3143–3149. doi:10.1158/1078-0432.CCR-08-3248

    Article  CAS  PubMed  Google Scholar 

  119. Schildhaus HU, Deml KF, Schmitz K et al (2013) Chromogenic in situ hybridization is a reliable assay for detection of ALK rearrangements in adenocarcinomas of the lung. Mod Pathol 26:1468–1477. doi:10.1038/modpathol.2013.95

    Article  CAS  PubMed  Google Scholar 

  120. Reguart N, Teixido C, Gimenez-Capitan A, Pare L, Galvan P, Viteri S, Rodriguez S, Peg V, Aldeguer E, Ovalle E, Vinolas N, Morales-Espinosa D, Karachaliou N, Conde E, Lopez-Rios F, Nadal E, Merkelbach-Bruse S, Büttner R, Rosell R, Molina-Vila MA, Prat A. Identification of clinically relevant ALK, ROS1 and RET rearrangements by an automated, multiplexed nCounter-based assay in formalin-fixed, paraffin-embedded samples from advanced non-small-cell lung cancer patients. Clin Chem, in press

  121. Pfarr N, Stenzinger A, Penzel R et al (2015) High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes Chromosomes Cancer 55(1):30–44. doi:10.1002/gcc.22297

    Article  PubMed  CAS  Google Scholar 

  122. Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, Chen J, Robinson HE, Shim HS, Chmielecki J, Pao W, Engelman JA, Iafrate AJ, Le LP (2014) Anchored multiplex PCR for targeted next-generation sequencing. Nat Med 20(12):1479–1484. doi:10.1038/nm.3729

    Article  CAS  PubMed  Google Scholar 

  123. Konig K, Peifer M, Fassunke J et al (2015) Implementation of amplicon parallel sequencing leads to improvement of diagnosis and therapy of lung cancer patients. J Thorac Oncol 10:1049–1057. doi:10.1097/JTO.0000000000000570

    Article  PubMed  Google Scholar 

  124. Moskalev EA, Frohnauer J, Merkelbach-Bruse S et al (2014) Sensitive and specific detection of EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) specimens by multiplex amplicon RNA massive parallel sequencing. Lung Cancer 84:215–221. doi:10.1016/j.lungcan.2014.03.002

    Article  PubMed  Google Scholar 

  125. Cheng DT, Mitchell TN, Zehir A et al (2015) Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17:251–264. doi:10.1016/j.jmoldx.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  126. Drilon A, Wang L, Arcila ME et al (2015) Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res 21:3631–3639. doi:10.1158/1078-0432.CCR-14-2683

    Article  PubMed  PubMed Central  Google Scholar 

  127. Minari R, Bordi P, Tiseo M (2016) Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance. Transl Lung Cancer Res 5(6):695–708. doi:10.21037/tlcr.2016.12.02

    Article  PubMed  PubMed Central  Google Scholar 

  128. Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR et al (2015) RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 6:6377. doi:10.1038/ncomms7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ou SI, Lee TK, Young L, Fernandez-Rocha MY, Pavlick D, Schrock AB, Zhu VW, Milliken J, Ali SM, Gitlitz BJ (2017) Dual occurrence of ALK G1202R solvent front mutation and small cell lung cancer transformation as resistance mechanisms to second generation ALK inhibitors without prior exposure to crizotinib. Pitfall of solely relying on liquid re-biopsy? Lung Cancer 106:110–114. doi:10.1016/j.lungcan.2017.02.005

    Article  PubMed  Google Scholar 

  130. Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, Fulton L, Hata AN, Lockerman EL, Kalsy A, Digumarthy S, Muzikansky A, Raponi M, Garcia AR, Mulvey HE, Parks MK, DiCecca RH, Dias-Santagata D, Iafrate AJ, Shaw AT, Allen AR, Engelman JA, Sequist LV (2015) Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov 5(7):713–722. doi:10.1158/2159-8290.CD-15-0399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim TM, Song A, Kim DW, Kim S, Ahn YO, Keam B, Jeon YK, Lee SH, Chung DH, Heo DS (2015) Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J Thorac Oncol 10(12):1736–1744. doi:10.1097/JTO.0000000000000688

    Article  CAS  PubMed  Google Scholar 

  132. Ham JS, Kim S, Kim HK, Byeon S, Sun JM, Lee SH, Ahn JS, Park K, Choi YL, Han J, Park W, Ahn MJ (2016) Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. J Thorac Oncol 11(1):e1–e4. doi:10.1016/j.jtho.2015.09.013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Merkelbach-Bruse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schallenberg, S., Merkelbach-Bruse, S. & Buettner, R. Lung cancer as a paradigm for precision oncology in solid tumours. Virchows Arch 471, 221–233 (2017). https://doi.org/10.1007/s00428-017-2183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-017-2183-2

Keywords

Navigation