Skip to main content
Log in

Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

DNA mismatch repair (MMR) protein analysis by immunohistochemistry (IHC) can identify colorectal cancer (CRC) with microsatellite instability (MSI). As MLH1-deficient CRC can be hereditary or sporadic, markers to distinguish between them are needed. MLH1 promoter methylation assay is the reference method; however, sometimes, it is challenging on formalin-fixed paraffin-embedded tissue samples. We assessed by IHC the expression of BRAFV600E, p16, MGMT, and CDX2 in 55 MLH1-deficient MSI CRC samples (of which 8 had a germline MLH1 mutation) to determine whether this panel differentiates between sporadic and hereditary CRCs. We also analyzed MLH1 promoter methylation by methylation-specific PCR and pyrosequencing and BRAF status by genotyping. None of the hereditary CRCs showed MLH1 methylation, BRAF mutation, BRAFV600E-positive immunostaining, or loss of p16 expression. We detected MLH1 promoter methylation in 67 % and a BRAF mutation in 42 % of CRC, all showing MLH1 promoter methylation. BRAFV600E IHC and BRAF genotyping gave concordant results in all but two samples. Loss of expression of p16 was found in 30 % of CRC with methylation of the MLH1 promoter, but its expression was retained in all non-methylated and part of MLH1-methylated tumors (100 % specificity, 30 % sensitivity). CDX2 and MGMT expression was not associated with MLH1 status. Thus, BRAFV600E and p16 IHC may help in differentiating sporadic from hereditary MLH1-deficient CRC with MSI. Specifically, p16 IHC might be used as a surrogate marker for MLH1 promoter methylation, because all p16-negative CRCs displayed MLH1 methylation, whereas hereditary CRCs were all p16-positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lynch HT, Krush AJ (1971) Cancer family “G” revisited: 1895-1970. Cancer 27:1505–1511

    Article  CAS  PubMed  Google Scholar 

  2. Mecklin JP, Järvinen HJ (1991) Tumor spectrum in cancer family syndrome (hereditary nonpolyposis colorectal cancer). Cancer 68:1109–1112

    Article  CAS  PubMed  Google Scholar 

  3. Liu T, Wahlberg S, Burek E, Lindblom P, Rubio C, Lindblom A (2000) Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer. Genes Chromosom Cancer 27:17–25

    Article  CAS  PubMed  Google Scholar 

  4. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  CAS  PubMed  Google Scholar 

  5. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  CAS  PubMed  Google Scholar 

  6. Piñol V, Castells A, Andreu M, et al. (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293:1986–1994

    Article  PubMed  Google Scholar 

  7. Amira AT, Mouna T, Ahlem B, Raoudha A, Majid BH, Amel H, Rachida Z, Nadia K (2014) Immunohistochemical expression pattern of MMR protein can specifically identify patients with colorectal cancer microsatellite instability. Tumour Biol 35:6283–6291

    Article  CAS  PubMed  Google Scholar 

  8. Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. J Mol Diagn 10:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thibodeau SN, French AJ, Roche PC, et al. (1996) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56:4836–4840

    CAS  PubMed  Google Scholar 

  10. Sinicrope FA, Sargent DJ (2012) Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin Cancer Res 18:1506–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tournier B, Chapusot C, Courcet E, Martin L, Lepage C, Faivre J, Piard F (2012) Why do results conflict regarding the prognostic value of the methylation status in colon cancers? The role of the preservation method. BMC Cancer 12:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simmer F, Brinkman AB, Assenov Y, et al. (2012) Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics 7:1355–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paya A, Alenda C, Perez-Carbonell L, et al. (2009) Utility of p16 immunohistochemistry for the identification of Lynch syndrome. Clin Cancer Res 15:3156–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lugli A, Tzankov A, Zlobec I, Terracciano LM (2008) Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod Pathol 21:1403–1412

    Article  CAS  PubMed  Google Scholar 

  15. Baba Y, Nosho K, Shima K, et al. (2009) Relationship of CDX2 loss with molecular features and prognosis in colorectal cancer. Clin Cancer Res 15:4665–4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zlobec I, Bihl M, Foerster A, Rufle A, Lugli A (2011) Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features. J Pathol 225:336–343

    Article  CAS  PubMed  Google Scholar 

  17. Shen L, Kondo Y, Rosner GL, et al. (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338

    Article  CAS  PubMed  Google Scholar 

  18. Nagasaka T, Goel A, Notohara K, Takahata T, Sasamoto H, Uchida T, Nishida N, Tanaka N, Boland CR, Matsubara N (2008) Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis. Int J Cancer 122:2429–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitehall VL, Walsh MD, Young J, Leggett BA, Jass JR (2001) Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res 61:827–830

    CAS  PubMed  Google Scholar 

  20. Shima K, Morikawa T, Baba Y, Nosho K, Suzuki M, Yamauchi M, Hayashi M, Giovannucci E, Fuchs CS, Ogino S (2011) MGMT promoter methylation, loss of expression and prognosis in 855 colorectal cancers. Cancer Causes Control 22:301–309

    Article  PubMed  Google Scholar 

  21. Svrcek M, Buhard O, Colas C, et al. (2010) Methylation tolerance due to an O6-methylguanine DNA methyltransferase (MGMT) field defect in the colonic mucosa: an initiating step in the development of mismatch repair-deficient colorectal cancers. Gut 59:1516–1526

    Article  CAS  PubMed  Google Scholar 

  22. Weisenberger DJ, Siegmund KD, Campan M, et al. (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  CAS  PubMed  Google Scholar 

  23. Domingo E, Niessen RC, Oliveira C, et al. (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24:3995–3998

    Article  CAS  PubMed  Google Scholar 

  24. Loughrey MB, Waring PM, Tan A, Trivett M, Kovalenko S, Beshay V, Young M-A, McArthur G, Boussioutas A, Dobrovic A (2007) Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Familial Cancer 6:301–310

    Article  CAS  PubMed  Google Scholar 

  25. Andrulis M, Penzel R, Weichert W, von Deimling A, Capper D (2012) Application of a BRAF V600E mutation-specific antibody for the diagnosis of hairy cell leukemia. Am J Surg Pathol 36:1796–1800

    Article  PubMed  Google Scholar 

  26. Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, von Deimling A, Birner P, Preusser M (2012) Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol 36:844–850

    Article  PubMed  Google Scholar 

  27. Colomba E, Hélias-Rodzewicz Z, Von Deimling A, et al. (2013) Detection of BRAF p.V600E mutations in melanomas: comparison of four methods argues for sequential use of immunohistochemistry and pyrosequencing. J Mol Diagn 15:94–100

    Article  CAS  PubMed  Google Scholar 

  28. Capper D, Voigt A, Bozukova G, Ahadova A, Kickingereder P, von Deimling A, von Knebel DM, Kloor M (2013) BRAF V600E-specific immunohistochemistry for the exclusion of Lynch syndrome in MSI-H colorectal cancer. Int J Cancer 133:1624–1630

    Article  CAS  PubMed  Google Scholar 

  29. Toon CW, Walsh MD, Chou A, et al. (2013) BRAFV600E immunohistochemistry facilitates universal screening of colorectal cancers for Lynch syndrome. Am J Surg Pathol 37:1592–1602

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thiel A, Heinonen M, Kantonen J, et al. (2013) BRAF mutation in sporadic colorectal cancer and Lynch syndrome. Virchows Arch 463:613–621

    Article  CAS  PubMed  Google Scholar 

  31. Molinari F, Signoroni S, Lampis A, Bertan C, Perrone F, Sala P, Mondini P, Crippa S, Bertario L, Frattini M (2014) BRAF mutation analysis is a valid tool to implement in Lynch syndrome diagnosis in patients classified according to the Bethesda guidelines. Tumori 100:315–320

    PubMed  Google Scholar 

  32. Boissière-Michot F, Denouël A, Boulle N, Guillaume C, Orsetti B, Lopez-Crapez E, Chateau M-C, Bibeau F (2013) The non-crosslinking fixative RCL2®-CS100 is compatible with both pathology diagnosis and molecular analyses. Pathol Oncol Res 19:41–53

    Article  PubMed  Google Scholar 

  33. Boissière-Michot F, Lopez-Crapez E, Frugier H, Berthe M-L, Ho-Pun-Cheung A, Assenat E, Maudelonde T, Lamy P-J, Bibeau F (2012) KRAS genotyping in rectal adenocarcinoma specimens with low tumor cellularity after neoadjuvant treatment. Mod Pathol 25:731–739

    Article  PubMed  Google Scholar 

  34. Lamy P-J, Castan F, Lozano N, Montélion C, Audran P, Bibeau F, Roques S, Montels F, Laberenne A-C (2015) Next-generation genotyping by digital PCR to detect and quantify the BRAF V600E mutation in melanoma biopsies. J Mol Diagn 17:366–373

    Article  CAS  PubMed  Google Scholar 

  35. Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, Goggins M (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60:1835–1839

    CAS  PubMed  Google Scholar 

  36. Saad RS (2011) CDX2 as a marker for intestinal differentiation: its utility and limitations. World J Gastrointest Surg 3:159

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vasen HFA, Blanco I, Aktan-Collan K, et al. (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62:812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hampel H (2014) NCCN increases the emphasis on genetic/familial high-risk assessment in colorectal cancer. J Natl Compr Cancer Netw 12:829–831

    Google Scholar 

  39. Mouradov D, Domingo E, Gibbs P, et al. (2013) Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol 108:1785–1793

    Article  CAS  PubMed  Google Scholar 

  40. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618

    Article  CAS  PubMed  Google Scholar 

  41. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46:2788–2798

    Article  CAS  PubMed  Google Scholar 

  42. Sinicrope FA, Foster NR, Thibodeau SN, et al. (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roth AD, Delorenzi M, Tejpar S, et al. (2012) Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 104:1635–1646

    Article  CAS  PubMed  Google Scholar 

  44. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varley KE, Mutch DG, Edmonston TB, Goodfellow PJ, Mitra RD (2009) Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res 37:4603–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parsons MT, Buchanan DD, Thompson B, Young JP, Spurdle AB (2012) Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 49:151–157

    Article  CAS  PubMed  Google Scholar 

  48. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Cunningham JM, Winters JL, Guenther JC, French AJ, Boardman LA, Burgart LJ, McDonnell SK, Schaid DJ, Thibodeau SN (2003) BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63:5209–5212

    CAS  PubMed  Google Scholar 

  50. Ogino S, Goel A (2008) Molecular classification and correlates in colorectal cancer. J Mol Diagn 10:13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, Giovannucci EL, Fuchs CS (2009) CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58:90–96

    Article  PubMed  Google Scholar 

  52. Domingo E, Laiho P, Ollikainen M, et al. (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adackapara CA, Sholl LM, Barletta JA, Hornick JL (2013) Immunohistochemistry using the BRAF V600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 63:187–193

    Article  PubMed  Google Scholar 

  54. Affolter K, Samowitz W, Tripp S, Bronner MP (2013) BRAF V600E mutation detection by immunohistochemistry in colorectal carcinoma: BRAF V600E immunohistochemistry. Genes Chromosom Cancer 52:748–752

    Article  CAS  PubMed  Google Scholar 

  55. Bledsoe JR, Kamionek M, Mino-Kenudson M (2014) BRAF V600E immunohistochemistry is reliable in primary and metastatic colorectal carcinoma regardless of treatment status and shows high intratumoral homogeneity. Am J Surg Pathol 38:1418–1428

    Article  PubMed  PubMed Central  Google Scholar 

  56. Day F, Muranyi A, Singh S, et al. (2015) A mutant BRAF V600E-specific immunohistochemical assay: correlation with molecular mutation status and clinical outcome in colorectal cancer. Target Oncol 10:99–109

    Article  PubMed  Google Scholar 

  57. Ilie MI, Long-Mira E, Hofman V, et al. (2014) BRAFV600E mutation analysis by immunohistochemistry in patients with thoracic metastases from colorectal cancer. Pathology 46:311–315

    Article  CAS  PubMed  Google Scholar 

  58. Lasota J, Kowalik A, Wasag B, Wang Z-F, Felisiak-Golabek A, Coates T, Kopczynski J, Gozdz S, Miettinen M (2014) Detection of the BRAF V600E mutation in colon carcinoma: critical evaluation of the immunohistochemical approach. Am J Surg Pathol 38:1235–1241

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schafroth C, Galván JA, Centeno I, et al. (2015) VE1 immunohistochemistry predicts BRAF V600E mutation status and clinical outcome in colorectal cancer. Oncotarget 6:41453–41463

    PubMed  PubMed Central  Google Scholar 

  60. Kuan S-F, Navina S, Cressman KL, Pai RK (2014) Immunohistochemical detection of BRAF V600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol 45:464–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hélène de Forges for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Boissière-Michot.

Ethics declarations

The study was approved by the research committee from Institut Régional du Cancer de Montpellier before initiation and was conducted in line with the principles enunciated in the Declaration of Helsinki.

Disclosure/conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boissière-Michot, F., Frugier, H., Ho-Pun-Cheung, A. et al. Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch 469, 135–144 (2016). https://doi.org/10.1007/s00428-016-1958-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-1958-1

Keywords

Navigation