Skip to main content

Advertisement

Log in

Inflammation in gastric adenocarcinoma of the cardia: how do EBV infection, Her2 amplification and cancer progression influence tumor-infiltrating lymphocytes?

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Tumor-infiltrating lymphocytes (TILs) in gastric adenocarcinoma show a strong compartmentalization with high numbers of lymphocytes in the stroma and low intraepithelial lymphocyte counts. Our previous study has shown stromal regulatory T cells (Treg) to be associated with a beneficial outcome in intestinal type cancer of the cardia. We undertook the present study to further evaluate the immunogenic and inflammatory environment in intestinal-type gastric adenocarcinoma of the cardia. We assessed CXCR3 expression, Epstein–Barr virus (EBV) status, Her2/ERBB2 status and overexpression/amplification using tissue microarrays (immunohistochemistry and in situ hybridization) of 52 patients. The data were correlated to different TIL subset counts (CD3, CD8, GranzymeB, FoxP3 and CD20) and to infiltrating histiocytes (CD68) both in the tumor and the surrounding stromal tissue that were reported earlier. Her2/ERBB2 overexpression/amplification showed no correlation to tumor stage. Moreover, for the first time, we show here that Her2/ERBB2 overexpression/amplification has no correlation to overall or subset-specific TIL infiltration. EBV infection was seen in four cases and showed a strong association with intratumoral CD8+ T cell infiltration as well as a moderate correlation to stromal CD8+ T cell accumulation. Intratumoral CD8+ T cell infiltration was significantly correlated to intratumoral FoxP3+ Treg infiltration, and to a lesser extent, to stromal FoxP3+ Treg counts. Stromal CXCR3+ T cell infiltration showed an inverse correlation to T category. This highlights the importance of stromal immune processes for cancer growth and suggests a subversion of Th1 immunoresponse in cancer progression and underlines the important role of inflammation for early carcinogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148. doi:10.1016/j.immuni.2004.07.017

    Article  PubMed  CAS  Google Scholar 

  2. Menon AG, Janssen-van Rhijn CM, Morreau H, Putter H, Tollenaar RA, van de Velde CJ, Fleuren GJ, Kuppen PJ (2004) Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest 84(4):493–501. doi:10.1038/labinvest.37000553700055

    Article  PubMed  CAS  Google Scholar 

  3. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936

    PubMed  CAS  Google Scholar 

  4. Solcia E, Klersy C, Mastracci L, Alberizzi P, Candusso ME, Diegoli M, Tava F, Riboni R, Manca R, Luinetti O (2009) A combined histologic and molecular approach identifies three groups of gastric cancer with different prognosis. Virchows Arch 455(3):197–211. doi:10.1007/s00428-009-0813-z

    Article  PubMed  CAS  Google Scholar 

  5. Oudejans JJ, Harijadi H, Kummer JA, Tan IB, Bloemena E, Middeldorp JM, Bladergroen B, Dukers DF, Vos W, Meijer CJ (2002) High numbers of granzyme B/CD8-positive tumour-infiltrating lymphocytes in nasopharyngeal carcinoma biopsies predict rapid fatal outcome in patients treated with curative intent. J Pathol 198(4):468–475. doi:10.1002/path.1236

    Article  PubMed  Google Scholar 

  6. Oudejans JJ, Jiwa NM, Kummer JA, Ossenkoppele GJ, van Heerde P, Baars JW, Kluin PM, Kluin-Nelemans JC, van Diest PJ, Middeldorp JM, Meijer CJ (1997) Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood 89(4):1376–1382

    PubMed  CAS  Google Scholar 

  7. Piccirillo CA, Thornton AM (2004) Cornerstone of peripheral tolerance: naturally occurring CD4 + CD25+ regulatory T cells. Trends Immunol 25(7):374–380. doi:10.1016/j.it.2004.04.009

    Article  PubMed  CAS  Google Scholar 

  8. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32. doi:1820102

    Article  PubMed  CAS  Google Scholar 

  9. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  PubMed  CAS  Google Scholar 

  10. Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV (2009) Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol 9:65. doi:1471-230X-9-65

    Article  PubMed  Google Scholar 

  11. Ohno S, Tachibana M, Fujii T, Ueda S, Kubota H, Nagasue N (2002) Role of stromal collagen in immunomodulation and prognosis of advanced gastric carcinoma. Int J Cancer 97(6):770–774. doi:10.1002/ijc.10144

    Article  PubMed  CAS  Google Scholar 

  12. Krieg C, Boyman O (2009) The role of chemokines in cancer immune surveillance by the adaptive immune system. Semin Cancer Biol 19(2):76–83. doi:10.1016/j.semcancer.2008.10.011

    Article  PubMed  CAS  Google Scholar 

  13. Syrbe U, Siveke J, Hamann A (1999) Th1/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin Immunopathol 21(3):263–285

    Article  PubMed  CAS  Google Scholar 

  14. Ohtani H, Yoshie O (2010) Morphometric analysis of the balance between CXCR3+ T cells and FOXP3+ regulatory T cells in lymphocyte-rich and conventional gastric cancers. Virchows Arch 456(6):615–623. doi:10.1007/s00428-010-0921-9

    Article  PubMed  CAS  Google Scholar 

  15. Ohtani H, Jin Z, Takegawa S, Nakayama T, Yoshie O (2009) Abundant expression of CXCL9 (MIG) by stromal cells that include dendritic cells and accumulation of CXCR3+ T cells in lymphocyte-rich gastric carcinoma. J Pathol 217(1):21–31. doi:10.1002/path.2448

    Article  PubMed  CAS  Google Scholar 

  16. Watanabe H, Enjoji M, Imai T (1976) Gastric carcinoma with lymphoid stroma. Its morphologic characteristics and prognostic correlations. Cancer 38(1):232–243

    Article  PubMed  CAS  Google Scholar 

  17. Minamoto T, Mai M, Watanabe K, Ooi A, Kitamura T, Takahashi Y, Ueda H, Ogino T, Nakanishi I (1990) Medullary carcinoma with lymphocytic infiltration of the stomach. Clinicopathologic study of 27 cases and immunohistochemical analysis of the subpopulations of infiltrating lymphocytes in the tumor. Cancer 66(5):945–952

    Article  PubMed  CAS  Google Scholar 

  18. Takada K (2000) Epstein–Barr virus and gastric carcinoma. Mol Pathol 53(5):255–261

    Article  PubMed  CAS  Google Scholar 

  19. van Beek J, zur Hausen A, Klein Kranenbarg E, van de Velde CJ, Middeldorp JM, van den Brule AJ, Meijer CJ, Bloemena E (2004) EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol 22(4):664–670. doi:10.1200/JCO.2004.08.061

    Article  PubMed  Google Scholar 

  20. Lee JH, Kim SH, Han SH, An JS, Lee ES, Kim YS (2009) Clinicopathological and molecular characteristics of Epstein–Barr virus-associated gastric carcinoma: a meta-analysis. J Gastroenterol Hepatol 24(3):354–365. doi:10.1111/j.1440-1746.2009.05775.x

    Article  PubMed  Google Scholar 

  21. Song HJ, Srivastava A, Lee J, Kim YS, Kim KM, Ki Kang W, Kim M, Kim S, Park CK (2010) Host inflammatory response predicts survival of patients with Epstein–Barr virus-associated gastric carcinoma. Gastroenterology 139(1):84–92.e82. doi:10.1053/j.gastro.2010.04.002

    Article  PubMed  Google Scholar 

  22. Gravalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19(9):1523–1529. doi:10.1093/annonc/mdn169

    Article  PubMed  CAS  Google Scholar 

  23. Tanner M, Hollmen M, Junttila TT, Kapanen AI, Tommola S, Soini Y, Helin H, Salo J, Joensuu H, Sihvo E, Elenius K, Isola J (2005) Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 16(2):273–278. doi:10.1093/annonc/mdi064

    Article  PubMed  CAS  Google Scholar 

  24. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697. doi:10.1016/S0140-6736(10)61121-X

    Article  PubMed  CAS  Google Scholar 

  25. Ruschoff J, Dietel M, Baretton G, Arbogast S, Walch A, Monges G, Chenard MP, Penault-Llorca F, Nagelmeier I, Schlake W, Hofler H, Kreipe HH (2010) HER2 diagnostics in gastric cancer—guideline validation and development of standardized immunohistochemical testing. Virchows Arch 457(3):299–307. doi:10.1007/s00428-010-0952-2

    Article  PubMed  Google Scholar 

  26. Kono K, Rongcun Y, Charo J, Ichihara F, Celis E, Sette A, Appella E, Sekikawa T, Matsumoto Y, Kiessling R (1998) Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. Int J Cancer 78(2):202–208. doi:10.1002/(SICI)1097-0215(19981005)78:2<202::AID-IJC14>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  27. Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K, Seliger B (2002) Cellular immunity to the Her-2/neu protooncogene. Adv Cancer Res 85:101–144

    Article  PubMed  CAS  Google Scholar 

  28. Stein HJ, Feith M, Siewert JR (2000) Cancer of the esophagogastric junction. Surg Oncol 9(1):35–41. doi:S0960-7404(00)00021-9

    Article  PubMed  CAS  Google Scholar 

  29. Pellegrini P, Berghella AM, Del Beato T, Cicia S, Adorno D, Casciani CU (1996) Disregulation in TH1 and TH2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother 42(1):1–8

    Article  PubMed  CAS  Google Scholar 

  30. Hansen S, Vollset SE, Derakhshan MH, Fyfe V, Melby KK, Aase S, Jellum E, McColl KE (2007) Two distinct aetiologies of cardia cancer; evidence from premorbid serological markers of gastric atrophy and Helicobacter pylori status. Gut 56(7):918–925. doi:10.1136/gut.2006.114504

    Article  PubMed  CAS  Google Scholar 

  31. Siman JH, Engstrand L, Berglund G, Forsgren A, Floren CH (2007) Helicobacter pylori and CagA seropositivity and its association with gastric and oesophageal carcinoma. Scand J Gastroenterol 42(8):933–940. doi:10.1080/00365520601173863

    Article  PubMed  CAS  Google Scholar 

  32. Tajima Y, Nakanishi Y, Yoshino T, Kokawa A, Kusano M, Shimoda T (2001) Clinicopathological study of early adenocarcinoma of the gastric cardia: comparison with early adenocarcinoma of the distal stomach and esophagus. Oncology 61(1):1–9. doi:ocl61001

    Article  PubMed  CAS  Google Scholar 

  33. Powell J, McConkey CC (1990) Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer 62(3):440–443

    Article  PubMed  CAS  Google Scholar 

  34. Sarbia M, Becker KF, Hofler H (2004) Pathology of upper gastrointestinal malignancies. Semin Oncol 31(4):465–475. doi:S0093775404002416

    Article  PubMed  Google Scholar 

  35. Kalish RJ, Clancy PE, Orringer MB, Appelman HD (1984) Clinical, epidemiologic, and morphologic comparison between adenocarcinomas arising in Barrett’s esophageal mucosa and in the gastric cardia. Gastroenterology 86(3):461–467. doi:S0016508584000615

    PubMed  CAS  Google Scholar 

  36. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H (2008) Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 98(1):148–153. doi:10.1038/sj.bjc.6604149

    Article  PubMed  CAS  Google Scholar 

  37. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6(3):205–217. doi:10.1038/nri1786

    Article  PubMed  CAS  Google Scholar 

  38. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54(14):3845–3852

    PubMed  CAS  Google Scholar 

  39. Krenauer A, Moll A, Ponisch W, Schmitz N, Niedobitek G, Niederwieser D, Aigner T (2010) EBV-associated post-transplantation B-cell lymphoproliferative disorder following allogenic stem cell transplantation for acute lymphoblastic leukaemia: tumor regression after reduction of immunosuppression—a case report. Diagn Pathol 5:21. doi:10.1186/1746-1596-5-21

    Article  PubMed  Google Scholar 

  40. Sugiura M, Imai S, Tokunaga M, Koizumi S, Uchizawa M, Okamoto K, Osato T (1996) Transcriptional analysis of Epstein–Barr virus gene expression in EBV-positive gastric carcinoma: unique viral latency in the tumour cells. Br J Cancer 74(4):625–631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Birgit Meyer for excellent technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luitpold V. Distel.

Additional information

Matthias Haas and Maike Büttner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, M., Büttner, M., Rau, T.T. et al. Inflammation in gastric adenocarcinoma of the cardia: how do EBV infection, Her2 amplification and cancer progression influence tumor-infiltrating lymphocytes?. Virchows Arch 458, 403–411 (2011). https://doi.org/10.1007/s00428-011-1058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1058-1

Keywords

Navigation