Skip to main content

Advertisement

Log in

Atherosclerosis: humoral and cellular factors of inflammation

  • Review Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

In the past decade, atherosclerosis has come to be recognized as active and inflammatory rather than simply a passive process of lipid infiltration or a reparative process after endothelial injury. In general, atherosclerosis can be considered as an intramural chronic inflammation resulting from interactions between modified lipoproteins, monocyte-derived macrophages, lymphocytes, and the normal cellular elements of the arterial wall. The process of inflammation occurs in response to functional and structural injury through a variety of known and unknown stimuli and is active over years and decades. Here, we review recent experimental and human studies of inflammatory mechanisms underlying the pathogenesis of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aliev G, Burnstock G (1998) Watanabe rabbits with heritable hypercholesterolaemia: a model of atherosclerosis. Histol Histopathol 13:797–817

    Google Scholar 

  2. Apfalter P, Barousch W, Nehr M et al (2004) No evidence of involvement of chlamydia pneumoniae in severe cerebrovascular atherosclerosis by means of quantitative real-time polymerase chain reaction. Stroke 35:2024–2028

    Article  Google Scholar 

  3. Barry-Lane PA, Patterson C, van der Merwe M et al (2001) p47phox is required for atherosclerotic lesion progression in ApoE(−/−) mice. J Clin Invest 108:1513–1522

    Article  CAS  PubMed  Google Scholar 

  4. Belalcazar LM, Merched A, Carr B et al (2003) Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia. Circulation 107:2726–2732

    Article  Google Scholar 

  5. Boger RH, Bode-Boger SM, Sydow K et al (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 20:1557–1564

    CAS  PubMed  Google Scholar 

  6. Botnar RM, Stuber M, Kissinger KV et al (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    Google Scholar 

  7. Chaabane L, Soulas EC, Contard F et al (2003) High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse. Invest Radiol 38:532–538

    Article  PubMed  Google Scholar 

  8. Collins RG, Velji R, Guevara NV et al (2000) P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194

    Article  Google Scholar 

  9. Coombes BK, Mahony JB (1999) Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s). Infect Immun 67:2909–2915

    Google Scholar 

  10. Cybulsky MI, Iiyama K, Li H et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262

    Google Scholar 

  11. Dansky HM, Charlton SA, Harper MM et al (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 94:4642–4646

    Article  Google Scholar 

  12. Daugherty A, Pure E, fel-Butteiger D et al (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100:1575–1580

    Google Scholar 

  13. Dechend R, Maass M, Gieffers J et al (1999) Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis. Circulation 100:1369–1373

    Google Scholar 

  14. Dimayuga P, Cercek B, Oguchi S et al (2002) Inhibitory effect on arterial injury-induced neointimal formation by adoptive B-cell transfer in Rag-1 knockout mice. Arterioscler Thromb Vasc Biol 22:644–649

    Article  Google Scholar 

  15. Drexler H (1998) Factors involved in the maintenance of endothelial function. Am J Cardiol 82:3S–4S

    Google Scholar 

  16. Endres M, Laufs U, Huang Z et al (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95:8880–8885

    Article  Google Scholar 

  17. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    Article  Google Scholar 

  18. Grayston JT (1992) Infections caused by Chlamydia pneumoniae strain. TWAR Clin Infect Dis 15:757–761

    Google Scholar 

  19. Gupta S, Pablo AM, Jiang X et al (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761

    Google Scholar 

  20. Halme S, Syrjala H, Bloigu A et al (1997) Lymphocyte responses to Chlamydia antigens in patients with coronary heart disease. Eur Heart J 18:1095–1101

    Google Scholar 

  21. Hamilton JA, Chan J, Byrne RJ et al (1998) MRL/lpr and MRL+/+ macrophage DNA synthesis in the absence and the presence of colony-stimulating factor-1 and granulocyte-macrophage colony-stimulating factor. J Immunol 161:6802–6811

    Google Scholar 

  22. Hansson GK, Holm J, Jonasson L (1989) Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 135:169–175

    Google Scholar 

  23. Hirai A, Nakamura S, Noguchi Y et al (1997) Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem 272:13–16

    Article  Google Scholar 

  24. Hu H, Pierce GN, Zhong G (1999) The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest 103:747–753

    Google Scholar 

  25. Huh HY, Pearce SF, Yesner LM et al (1996) Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. Blood 87:2020–2028

    Google Scholar 

  26. Inoue S, Egashira K, Ni W et al (2002) Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106:2700–2706

    Google Scholar 

  27. Jantos CA, Nesseler A, Waas W et al (1999) Low prevalence of Chlamydia pneumoniae in atherectomy specimens from patients with coronary heart disease. Clin Infect Dis 28:988–992

    Google Scholar 

  28. Kalayoglu MV, Hoerneman B, La Verda D et al (1999) Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis 180:780–790

    Article  Google Scholar 

  29. Keech A, Colquhoun D, Best J et al (2003) Secondary prevention of cardiovascular events with long-term pravastatin in patients with diabetes or impaired fasting glucose: results from the LIPID trial. Diabetes Care 26:2713–2721

    CAS  PubMed  Google Scholar 

  30. Kopp AF, Schroeder S, Baumbach A et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11:1607–1611

    Article  PubMed  Google Scholar 

  31. Kritchevsky D (1995) Dietary protein, cholesterol and atherosclerosis: a review of the early history. J Nutr 125:589S–593S

    Google Scholar 

  32. Langheinrich AC, Braun-Dullaeus RC, Walker G et al (2003) Effects of 3–deazaadenosine on homocysteine and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 171:181–192

    Article  Google Scholar 

  33. Langheinrich AC, Bohle RM, Greschus S et al (2004) Atherosclerotic lesions at micro CT: feasibility for analysis of coronary artery wall in autopsy specimens. Radiology 231:675–681

    Google Scholar 

  34. Laukkanen MO, Mannermaa S, Hiltunen MO et al (1999) Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 19:2171–2178

    Google Scholar 

  35. Laurat E, Poirier B, Tupin E et al (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104:197–202

    Google Scholar 

  36. Lemaitre V, O’Byrne TK, Borczuk AC et al (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 107:1227–1234

    Google Scholar 

  37. Lentz SR, Sadler JE (1991) Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 88:1906–1914

    Google Scholar 

  38. Matsumoto S, Kobayashi T, Katoh M et al (1998) Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development. Am J Pathol 153:109–119

    Google Scholar 

  39. McCully KS, Wilson RB (1975) Homocysteine theory of arteriosclerosis. Atherosclerosis 22:215–227

    CAS  PubMed  Google Scholar 

  40. Mehta J, Dinerman J, Mehta P et al (1989) Neutrophil function in ischemic heart disease. Circulation 79:549–556

    Google Scholar 

  41. Merhi Y, Lacoste LL, Lam JY (1994) Neutrophil implications in platelet deposition and vasoconstriction after deep arterial injury by angioplasty in pigs. Circulation 90:997–1002

    Google Scholar 

  42. Metzger R, Bohle RM, Chumachenko P et al (2000) CD143 in the development of atherosclerosis. Atherosclerosis 150:21–31

    CAS  PubMed  Google Scholar 

  43. Moazed TC, Kuo CC, Grayston JT et al (1998) Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis 177:1322–1325

    Google Scholar 

  44. Mosorin M, Surcel HM, Laurila A et al (2000) Detection of Chlamydia pneumoniae-reactive T lymphocytes in human atherosclerotic plaques of carotid artery. Arterioscler Thromb Vasc Biol 20:1061–1067

    Google Scholar 

  45. Naruko T, Ueda M, Haze K et al (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900

    Article  Google Scholar 

  46. Ni W, Egashira K, Kataoka C et al (2001) Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 89:415–421

    Google Scholar 

  47. Paigen B, Morrow A, Holmes PA et al (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68:231–240

    Google Scholar 

  48. Paiva H, Laakso J, Laine H et al (2002) Plasma asymmetric dimethylarginine and hyperemic myocardial blood flow in young subjects with borderline hypertension or familial hypercholesterolemia. J Am Coll Cardiol 40:1241–1247

    Article  Google Scholar 

  49. Palinski W, Miller E, Witztum JL (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 92:821–825

    Google Scholar 

  50. Paul A, Ko KW, Li L et al (2004) C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109:647–655

    Article  Google Scholar 

  51. Peters W, Charo IF (2001) Involvement of chemokine receptor 2 and its ligand, monocyte chemoattractant protein-1, in the development of atherosclerosis: lessons from knockout mice. Curr Opin Lipidol 12:175–180

    Article  Google Scholar 

  52. Poddar R, Sivasubramanian N, Di Bello PM et al (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103:2717–2723

    Google Scholar 

  53. Prescott MF, Sawyer WK, Von Linden-Reed J et al (1999) Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann N Y Acad Sci 878:179–190

    Google Scholar 

  54. Ridker PM, Rifai N, Rose L et al (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  CAS  PubMed  Google Scholar 

  55. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  56. Shor A, Kuo CC, Patton DL (1992) Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 82:158–161

    Google Scholar 

  57. Smith JD, Trogan E, Ginsberg M et al (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 92:8264–8268

    Google Scholar 

  58. Song L, Leung C, Schindler C (2001) Lymphocytes are important in early atherosclerosis. J Clin Invest 108:251–259

    Article  Google Scholar 

  59. Sowers JR (2002) Hypertension, angiotensin II, and oxidative stress. N Engl J Med 346:1999–2001

    Article  PubMed  Google Scholar 

  60. Stehbens WE (1999) Anitschkow and the cholesterol over-fed rabbit. Cardiovasc Pathol 8:177–178

    Article  Google Scholar 

  61. Stein EA, Davidson MH, Dobs AS et al (1998) Efficacy and safety of simvastatin 80 mg/day in hypercholesterolemic patients. The Expanded Dose Simvastatin U.S. Study Group. Am J Cardiol 82:311–316

    Article  Google Scholar 

  62. Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105:2107–111

    Article  Google Scholar 

  63. Steinberg D, Parthasarathy S, Carew TE et al (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    CAS  PubMed  Google Scholar 

  64. Stuhlinger MC, Tsao PS, Her JH et al (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104:2569–2575

    Google Scholar 

  65. Verma S, Wang CH, Li SH et al (2002) A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106:913–919

    Article  Google Scholar 

  66. Wang G, Woo CW, Sung FL et al (2002) Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol 22:1777–1783

    Article  Google Scholar 

  67. Wassmann S, Czech T, Eickels M et al (2004) Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotension II type 1A receptor double-knockout mice. Circulation 110:27–32

    Article  Google Scholar 

  68. Yla-Herttuala S, Palinski W, Butler SW et al (1994) Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 14:32–40

    Google Scholar 

  69. Zhou X, Stemme S, Hansson GK (1996) Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 149:359–366

    Google Scholar 

  70. Zhou X, Caligiuri G, Hamsten A et al (2001) LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21:108–114

    Google Scholar 

  71. Zibara K, Chignier E, Covacho C et al (2000) Modulation of expression of endothelial intercellular adhesion molecule-1, platelet-endothelial cell adhesion molecule-1, and vascular cell adhesion molecule-1 in aortic arch lesions of apolipoprotein E-deficient compared with wild-type mice. Arterioscler Thromb Vasc Biol 20:2288–2296

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Bohle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langheinrich, A.C., Bohle, R.M. Atherosclerosis: humoral and cellular factors of inflammation. Virchows Arch 446, 101–111 (2005). https://doi.org/10.1007/s00428-004-1180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-004-1180-4

Keywords

Navigation