Skip to main content
Log in

Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Peritoneal fibrosis is one of the most common morphological changes observed in continuous ambulatory peritoneal dialysis (CAPD) patients. Both resident fibroblasts and new fibroblast-like cells derived from the mesothelium by epithelial-to-mesenchymal transition are the main cells involved fibrogenesis. In order to establish markers of peritoneal impairment and pathogenic clues to explain the fibrogenic process, we conducted an immunohistochemical study focused on peritoneal fibroblasts. Parietal peritoneal biopsies were collected from four patient groups: normal controls (n=15), non-CAPD uremic patients (n=17), uremic patients on CAPD (n=27) and non-renal patients with inguinal hernia (n=12). To study myofibroblastic conversion of mesothelial cells, α-smooth muscle actin (SMA), desmin, cytokeratins and E-cadherin were analyzed. The expression of CD34 by fibroblasts was also analyzed. Fibroblasts from controls and non-CAPD uremic patients showed expression of CD34, but no myofibroblastic or mesothelial markers. The opposite pattern was present during CAPD-related fibrosis. Expression of cytokeratins and E-cadherin by fibroblast-like cells and α-SMA by mesothelial and stromal cells supports that mesothelial-to-myofibroblast transition occurs during CAPD. Loss of CD34 expression correlated with the degree of peritoneal fibrosis. The immunophenotype of fibroblasts varies during the progression of fibrosis. Myofibroblasts seem to derive from both activation of resident fibroblasts and local conversion of mesothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe R, Donnelly SC, Peng T et al (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    CAS  PubMed  Google Scholar 

  2. Aiba S, Tagami H (1997) Inverse correlation between CD34 expression and proline-4-hydroxylase immunoreactivity on spindle cells noted in hypertrophic scars and keloids. J Cutan Pathol 24:65–69

    CAS  PubMed  Google Scholar 

  3. Aiba S, Tabata N, Ohtani H et al (1994) CD34+ spindle shaped cells selectively disappear from the skin lesions of scleroderma. Arch Dermatol 130:593–597

    CAS  PubMed  Google Scholar 

  4. Barth PJ, Ebrahimsade S, Hellinger A et al (2002) CD34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch 440:128–133

    CAS  PubMed  Google Scholar 

  5. Bongiovanni M, Viberti L, Pecchioni C et al (2002) Steroid hormone receptor in pleural solitary fibrous tumours and CD34+ progenitor stromal cells. J Pathol 198:252–257

    Article  PubMed  Google Scholar 

  6. Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    CAS  PubMed  Google Scholar 

  7. Chauhan H, Abraham A, Phillips JR et al (2003) There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol 56:271–276

    Article  CAS  PubMed  Google Scholar 

  8. Delia D, Lampugnani MG, Resnatti M, Dejana E, Aiello A, Fontanella E, Soligo D, Pierotti MA, Greaves MF (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81:1001–1008

    CAS  PubMed  Google Scholar 

  9. Dobbie JW (1992) Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 12:14–27

    CAS  PubMed  Google Scholar 

  10. Iwano M, Plieth D, Danoff TM et al (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    Article  CAS  PubMed  Google Scholar 

  11. Kirchmann TT, Prieto VG, Smoller BR (1995) Use of CD34 in assessing the relationship between stroma and tumor in desmoplastic keratinocytic neolasms. J Cutan Pathol 22:422–426

    CAS  PubMed  Google Scholar 

  12. Krause DS, Fackler MJ, Civin CI (1996) CD34: structure, biology and clinical utility. Blood 87:1–13

    CAS  PubMed  Google Scholar 

  13. Mateijsen MAM, van der Wal AC, Hendriks PMEM et al (1999) Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int 19:517–525

    CAS  PubMed  Google Scholar 

  14. Nakayama H, Enzan H, Miyazaki E et al (2000) Differential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumor stroma. J Clin Pathol 53:626–629

    Google Scholar 

  15. Nakazato Y, Yamaji Y, Oshima N et al (2002) Calcification and osteopontin localization in the peritoneum of patients on long-term continuous ambulatory peritoneal dialysis therapy. Nephrol Dial Transplant 17:1293–1303

    Article  PubMed  Google Scholar 

  16. Narvaez D, Kanitakis J, Faure M et al (1996) Immunohistochemical study of CD34-positive dendritic cells of human dermis. Am J Dermatopathol 18:283–288

    CAS  PubMed  Google Scholar 

  17. Oldfield MD, Bach LA, Forbes JM et al (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863

    Article  CAS  PubMed  Google Scholar 

  18. Plum J, Hermann S, Fusshöller A et al (2001) Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int 59[Suppl 78]:42–47

  19. Powell DW, Mifflin RC, Valentich JD et al (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C19

    CAS  PubMed  Google Scholar 

  20. Schürch W, Seemayer TA, Gabbiani G (1998) The myofibroblast. A quarter century after its discovery. Am J Surg Pathol 22:141–147

    Article  CAS  PubMed  Google Scholar 

  21. Selgas R, Fernandez-Reyes MJ, Bosque E et al (1994) Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium–long term study. Am J Kidney Dis 23:64–73

    CAS  PubMed  Google Scholar 

  22. Shioshita K, Miyazaki M, Ozono Y et al (2000) Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuous ambulatory peritoneal dialysis. Kidney Int 57:619–631

    Article  CAS  PubMed  Google Scholar 

  23. Skobieranda K, Helm KF (1995) Decreased expression of the human progenitor cell antigen (CD34) in morphea. Am J Dermatopathol 17:471–475

    PubMed  Google Scholar 

  24. Stahl PJ, Felsen D (2001) Transforming growth factor-β, basement membrane, and epithelial-mesenchymal transdifferentiation. Implications for fibrosis in kidney disease. Am J Pathol 159:1187–1192

    PubMed  Google Scholar 

  25. Suster S (2000) Recent advances in the application of immunohistochemical markers for the diagnosis of soft tissue tumors. Semin Diagn Pathol 17:225–235

    PubMed  Google Scholar 

  26. Van de Rijn M, Rouse RV (1994) CD-34. A review. Appl Immunohistochem 2:71–80

    Google Scholar 

  27. Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN (1999) CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest 79:59–65

    CAS  PubMed  Google Scholar 

  28. Westra WH, Gerald WL, Rosai J (1994) Solitary fibrous tumor. Consistent CD34 immunoreactivity and occurrence in the orbit. Am J Surg Pathol 18:992–998

    CAS  PubMed  Google Scholar 

  29. Williams JD, Craig KJ, Topley N et al (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed  Google Scholar 

  30. Yamazaki K, Eyden BP (1996) Ultrastructural and immunohistochemical studies of intralobular fibroblasts in human submandibular gland: the recognition of a “CD34 positive reticular network” connected by gap junctions. J Submicrosc Cytol Pathol 28:471–483

    CAS  PubMed  Google Scholar 

  31. Yamazaki K, Eyden BP (1997) Interfollicular fibroblasts in the human thyroid gland: recognition of a CD34 positive stromal cell network communicated by gap junctions and terminated by autonomic nerve endings. J Submicrosc Cytol Pathol 29:461–476

    CAS  PubMed  Google Scholar 

  32. Yang AH, Chen JY, Lin JK (2003) Myofibroblastic conversion of mesothelial cells. Kidney Int 63:1530–1539

    PubMed  Google Scholar 

  33. Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implication in renal interstitial fibrosis. Am J Pathol 159:1465–1475

    Google Scholar 

  34. Yañez-Mo M, Lara-Pezzi E, Selgas R et al (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the surgeons and nephrology nurses involved in the peritoneal biopsy performance and manipulation. We also thank M. Angeles Cuevas and Norma Freire for their technical assistance on immunohistochemical studies. Grants SAF 2001–0305 from Ministerio de Ciencia y Tecnología to M.L-C, FIS 01/0063–02 from Ministerio de Sanidad y Consumo to R.S. We are indebted to Fresenius Medical Care for the provision of an educational grant to L.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Jiménez-Heffernan.

Additional information

Manuel López-Cabrera and Rafael Selgas contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Heffernan, J.A., Aguilera, A., Aroeira, L.S. et al. Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Arch 444, 247–256 (2004). https://doi.org/10.1007/s00428-003-0963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-003-0963-3

Keywords

Navigation