Skip to main content
Log in

Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bate CM (1976) Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol exp Morph 35:107–123

    PubMed  CAS  Google Scholar 

  • Bate CM, Grunewald EB (1981) Embryogenesis of an insect nervous system. II. A second class of precursor cells and the origin of the intersegmental connectives. J Embryol Exp Morph 61:317–330

    PubMed  CAS  Google Scholar 

  • Bacon JP (1980) A homologous interneurone in a locust, a cricket and a mantid. Verh dt. zool Ges 1980:163

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Article  PubMed  CAS  Google Scholar 

  • Bacon JP, Möhl B (1979) Activity of an identified wind interneurone in a flying locust. Nature 278:638–640

    Article  Google Scholar 

  • Bacon JP, Möhl B (1983) The tritocerebral commissure giant (TCG) windsensitive interneurone in the locust. I. Its activity in straight flight. J Comp Physiol A 150:439–452

    Article  Google Scholar 

  • Bacon JP, Tyrer M (1978) The tritocerebral commissure giant (TCG): a bimodal interneurone in the locust, Schistocerca gregaria. J Comp Physiol A 126:317–325

    Article  Google Scholar 

  • Bastiani MJ, Pearson KG, Goodman CS (1984) From embryonic fascicles to adult tracts: organization of neuropile from a developmental perspective. J Exp Biol 112:45–64

    PubMed  CAS  Google Scholar 

  • Bentley D, Toroian-Raymond A (1981) Embryonic and postembryonic morphogenesis of a grasshopper interneuron. J Comp Neurol 201:501–518

    Article  Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morph 54:47–74

    PubMed  CAS  Google Scholar 

  • Bicker G, Pearson KG (1983) Initiation of flight by an identified wind sensitive neurone (TCG) in the locust. J Exp Biol 104:289–293

    Google Scholar 

  • Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyan GS (1992) Common synaptic drive to segmentally homologous interneurons in the locust. J Comp Neurol 321:544–554

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Ball EE (1993) The grasshopper, Drosophila, and neuronal homology. Prog Neurobiol 41:657–682

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Hirth F, Reichert H (2003) Commissure formation in the embryonic insect brain. Arthr Struct Devel 32:61–77

  • Boyan GS, Liu Y, Loser M (2012). A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 222:125–138

  • Boyan G, Liu Y (2014) Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 224:37–51

    Article  PubMed  Google Scholar 

  • Boyan GS, Liu Y (2016) Development of the neurochemical architecture of the central complex. Front Behav Neurosci 10:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34:247–257

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Williams JLD (1995) Lineage analysis as an analytical tool in the insect central nervous system: bringing order to interneurons. In: Breidbach O, Kutsch W (eds) The nervous Systems of Invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 273–301

    Chapter  Google Scholar 

  • Boyan G, Williams L (2002) A single cell analysis of engrailed expression in the early embryonic brain of the grasshopper Schistocerca gregaria: ontogeny and identity of the secondary headspot cells. Arthr Struct Devel 30:207–218

    Article  CAS  Google Scholar 

  • Boyan G, Williams L, Meier T (1993) Organization of the commissural fibers in the adult and early embryonic brain of the locust. J Comp Neurol 332:358–377

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Therianos S, Williams JLD, Reichert H (1995a) Axogenesis in the embryonic brain of the grasshopper Schistocerca gregaria: an identified cell analysis of early brain development. Development 121:75–86

    PubMed  CAS  Google Scholar 

  • Boyan GS, Williams JLD, Reichert H (1995b) Morphogenetic reorganization of the brain during embryogenesis in the grasshopper. J Comp Neurol 361:429–440

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Williams JLD, Herbert Z (2008) An ontogenetic anaysis of locustatachykinin-like expression in the central complex of the grasshopper Schistocerca gregaria. Arthr Struct Dev 37:480–491

    Article  CAS  Google Scholar 

  • Boyan GS, Williams L, Legl A, Herbert Z (2010) Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 341:259–277

    Article  PubMed  Google Scholar 

  • Bravo R, Celis JE (1980) A search for differential polypeptide synthesis throughout the cell cycle of Hela cells. J Cell Biol 84:795–802

    Article  PubMed  CAS  Google Scholar 

  • Bravo R, Macdonald-Bravo H (1987) Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol 105:1549–1554

    Article  PubMed  CAS  Google Scholar 

  • Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996

    PubMed  CAS  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Celis JE, Madsen P, Celis A, Nielsen HV, Gesser B (1987) Cyclin (PCNA, auxiliary protein of DNA polymerase delta) is a central component of the pathway(s) leading to DNA replication and cell division. FEBS Lett 220:1–7

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ, Goodman CS (1985) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:206–219

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt E, Kleele T, Boyan G (2015) A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 225:187–194

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Spitzer NC (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature 280:208–214

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, O'Shea M, McCaman R, Spitzer NC (1979) Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation. Science 204:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Pearson KG, Spitzer NC (1980) Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast. Proc Natl Acad Sci U S A 77:1676–1680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griss C, Rowell CHF (1986) Three descending interneurons reporting deviation from course in the locust I Anatomy. J Comp Physiol A 158:765–774

    Article  PubMed  CAS  Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J Neurophysiol 83:712–722

    Article  PubMed  CAS  Google Scholar 

  • Hedwig B, Heinrich R (1997) Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J Comp Physiol A 180:285–294

    Article  Google Scholar 

  • Hensler K (1990) Neural control of optomotor head rolling in locusts. Naturwissenschaften 77:35–37

    Article  Google Scholar 

  • Hensler K, Rowell CHF (1990) Control of optomotor responses by descending deviation detectors in intact flying locusts. J Exp Biol 149:191–205

    Google Scholar 

  • Hall PA, Levison DA, Woods AL, CC-W Y, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP (1990) Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162:285–294

    Article  PubMed  CAS  Google Scholar 

  • Huber F, Markl H (2012) Neuroethology and behavioral physiology: roots and growing points. Springer Science & Business Media, Berlin Heidelberg New York

    Google Scholar 

  • Ito K, Awasaki T (2008) Clonal unit architecture of the adult fly brain. In: Technau GM (ed) Brain development in Drosophila melanogaster. Springer, New York, pp 137–158

    Chapter  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149:134–148

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    PubMed  CAS  Google Scholar 

  • Izergina N, Balmer J, Bello B, Reichert H (2009) Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev 4:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kien J, Williams M (1983) Morphology of neurons in locust brain and suboesophageal ganglion involved in initiation and maintenance of walking. Proc R Soc Lond (Biol) 219:175–192

    Article  Google Scholar 

  • Kononenko NL, Pflüger HJ (2007) Dendritic projections of different types of octopaminergic unpaired median neurons in the locust metathoracic ganglion. Cell Tissue Res 330:179–195

    Article  PubMed  Google Scholar 

  • Kutsch W, Hemmer W (1994) Ontogenetic studies of flight initiation in Locusta: wind response of an identified interneuron (TCG). J Insect Physiol 40:97–106

    Article  Google Scholar 

  • Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  PubMed  CAS  Google Scholar 

  • Ludwig P, Williams JLD, Lodde E, Reichert H, Boyan GS (1999) Neurogenesis in the median domain of the embryonic brain of the grasshopper Schistocerca gregaria. J Comp Neurol 414:379–390

    Article  PubMed  CAS  Google Scholar 

  • Ludwig P, Williams JLD, Nässel DR, Reichert H, Boyan GS (2001) Primary commissure pioneer neurons in the brain of the grasshopper Schistocerca gregaria: development, ultrastructure, and neuropeptide expression. J Comp Neurol 430:118–130

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Therianos S, Zacharias D, Reichert H (1993) Developmental expression of the TERM-1 glycoprotein on growth cones and terminal arbors of individual identified neurons in the grasshopper. J Neurosci 13:1498–1510

    Article  PubMed  CAS  Google Scholar 

  • Möhl B, Bacon JP (1983) The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. II. Directional sensitivity and role in flight stabilisation. J Comp Physiol A 150:452–465

    Article  Google Scholar 

  • Müller T (1995) Ontogenetic studies of the TCG-neuron in locusts. Diplomarbeit, Fakultät für Biologie, Universität Konstanz

  • Ng L, Prelich G, Anderson CW, Stillman B, Fisher PA (1990) Drosophila proliferating cell nuclear antigen. J Biol Chem 266:11948–11954

    Google Scholar 

  • O'Shea M, Adams M (1986) Proctolin: from “gutfactor” to model neuropeptide. Adv Insect Physiol 19:1–28

    CAS  Google Scholar 

  • O'Shea M, Williams JLD (1974) Anatomy and output connections of the lobular giant movement detector neuron (LGMD) of the locust. J Comp Physiol A 91:257–266

    Article  Google Scholar 

  • O'Shea M, Rowell CHF, Williams JLD (1974) The anatomy of a locust visual interneurone; the descending contralateral movement detector. J Exp Biol 60:1–12

    Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Boyan GS, Bastiani MJ, Goodman CS (1985) Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts. J Comp Neurol 233:133–145

    Article  PubMed  CAS  Google Scholar 

  • Rind FC, Bramwell DI (1996) Neural network based on the input organization of an identified neuron signaling impending collision. J Neurophysiol 75:967–985

    Article  PubMed  CAS  Google Scholar 

  • Rind FC, Santer RD, Wright GA (2008) Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J Neurophysiol 100:670–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichert H (2011) Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. In: Kubiak JZ (ed) Cell cycle in development, results and problems in cell differentiation. Springer, Berlin Heidelberg, pp 529–546

    Google Scholar 

  • Robertson RM, Pearson KG, Reichert H (1982) Flight interneurons in the locust and the origin of insect wings. Science 227:177–179

    Article  Google Scholar 

  • Rowell CHF (1971) The orthopteran descending movement detector (DMD) neurones: a characterisation and review. Z Vergl Physiol 73:167–194

    Article  Google Scholar 

  • Santer RD, Rind FC, Stafford R, Simmons PJ (2006) Role of an identified looming-sensitive neuron in triggering a flying locustʼs escape. J Neurophysiol 95:3391–3400

    Article  PubMed  Google Scholar 

  • Shepherd D, Bate CM (1990) Spatial and temporal patterns of neurogenesis in the embryo of the locust Schistocerca gregaria. Development 108:83–96

    Google Scholar 

  • Shepherd D, Harris R, Williams DW, Truman JW (2016) Postembryonic lineages of the Drosophila ventral nervous system: neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres. J Comp Neurol 524:2677–2695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shreeram S, Blow JJ (2003) The role of the replication licensing system in cell proliferation and cancer. Prog Cell Cycle Res 5:287–293

    PubMed  PubMed Central  CAS  Google Scholar 

  • Simmons P (1980) A locust wind and ocellar brain neurone. J Exp Biol 85:281–294

    Google Scholar 

  • Simmons PJ, Rind FC (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68:1667–1682

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Rind FC (1997) Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: characterization and image cues. J Comp Physiol A 180:203–214

    Article  Google Scholar 

  • Simmons PJ, Sztarker J, Rind FC (2013) Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria. J Exp Biol 216:2266–2275

    Article  PubMed  Google Scholar 

  • Stevenson PA, Kutsch W (1988) Demonstration of functional connectivity of the flight motor system in all stages of the locust. J Comp Physiol A 162:247–259

    Article  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

    Article  PubMed  CAS  Google Scholar 

  • Truman JW, Schuppe H, Shepherd D, Williams DW (2004) Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila. Development 131:5167–5184

    Article  PubMed  CAS  Google Scholar 

  • Tyrer NM, Pozza MF, Humbel U, Peters BH, Bacon JP (1988) The tritocerebral commissure 'dwarf' (TCD): a major GABA-immunoreactive descending interneuron in the locust. J Comp Physiol A 164:141–150

    Article  PubMed  CAS  Google Scholar 

  • Urbach R, Technau GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthr Struct Devel 32:103–123

    Article  Google Scholar 

  • Williams JLD (1972) Some observations on the neuronal organisation of the supra-oesophageal ganglion in Schistocerca gregaria Forskål with particular reference to the central complex. PhD Thesis, University of Wales

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Article  Google Scholar 

  • Williams JLD, Guentner M, Boyan GS (2005) Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts. Arthr Struct Devel 3:97–110

    Article  Google Scholar 

  • Yamaguchi M, Date T, Matsukage A (1991) Distribution of PCNA in Drosophila embryo during nuclear division cycles. J Cell Sci 100:729–733

    PubMed  Google Scholar 

  • Yamaguchi M, Nishimoto Y, Hirose F, Matsukage A (1995) Distribution of PCNA during postblastoderm cell division cycles in the Drosophila melanogaster embryo: effect of a string- mutation. Cell Struc Funct 20:47–57

    Article  CAS  Google Scholar 

  • Zacharias D, Williams JLD, Meier T, Reichert H (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo. Development 118:941–955

    CAS  Google Scholar 

  • Zudaire E, Simpson SJ, Illa I, Montuenga LM (2004) Dietary influences over proliferating cell nuclear antigen expression in the locust midgut. J Exp Biol 207:2255–2265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

George Boyan and Leslie Williams thank Dr. E. Ball for the gift of the engrailed antibody, Dr. E. Ehrhardt for assistance with the confocal microscopy, and Karin Fischer for general technical assistance. George Boyan and Leslie Williams received support from the Deutsche Forschungsgemeinschaft (BO 1434/3-5) and the Graduate School of Systemic Neuroscience, LMU. Tobias Müller acknowledges the personal support of Prof. Dr. W. Kutsch, Universität Konstanz, and received financial support from the Deutsche Akademische Austauschdienst (DAAD) and from ARC grant 313-ARC-VII 93/50 to Jonathan Bacon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Stephen Boyan.

Ethics declarations

All experiments were performed in accordance with the guidelines for animal welfare as laid down by the Deutsche Forschungsgemeinschaft.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Claude Desplan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyan, G.S., Williams, L., Müller, T. et al. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 228, 149–162 (2018). https://doi.org/10.1007/s00427-018-0612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-018-0612-0

Keywords

Navigation