Skip to main content

Advertisement

Log in

The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Primary branching in the Drosophila trachea is regulated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix-PAS (bHLH-PAS) heterodimers, the POU protein Drifter (Dfr)/Ventral Veinless (Vvl), and the Pointed (Pnt) ETS transcription factor. The jing gene encodes a zinc finger protein also required for tracheal development. Three Trh/Tgo DNA-binding sites, known as CNS midline elements, in 1.5 kb of jing 5′ cis-regulatory sequence (jing1.5) previously suggested a downstream role for jing in the pathway. Here, we show that jing is a direct downstream target of Trh/Tgo and that Vvl and Pnt are also involved in jing tracheal activation. In vivo lacZ enhancer detection assays were used to identify cis-regulatory elements mediating embryonic expression patterns of jing. A 2.8-kb jing enhancer (jing2.8) drove lacZ expression in all tracheal cell lineages, the CNS midline and Engrailed-positive segmental stripes, mimicking endogenous jing expression. A 1.3-kb element within jing2.8 drove expression that was restricted to Engrailed-positive CNS midline cells and segmental ectodermal stripes. Surprisingly, jing1.5-lacZ expression was restricted to tracheal fusion cells despite the presence of consensus DNA-binding sites for bHLH-PAS, ETS, and POU domain transcription factors. Given the absence of Trh/Tgo DNA-binding sites in the jing1.3 enhancer, these results are consistent with previous observations suggesting a combinatorial basis to Trh-/Tgo-mediated transcriptional regulation in the trachea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI- BLAST: a generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Anderson MG, Perkins GL, Chittick P, Shribley RJ, Johnson WA (1995) drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. Genes Dev 9:123–137

    Article  CAS  PubMed  Google Scholar 

  • Anderson MG, Certel SJ, Certel J, Lee T, Montell DJ, Johnson WA (1996) Function of the Drosophila POU domain transcription factor Drifter as an upstream regulator of Breathless receptor tyrosine kinase expression in the developing trachea. Development 122:4169–4178

    CAS  PubMed  Google Scholar 

  • Bergmann A, Tugentman M, Shilo B-Z, Stiller H (2002) Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signalling. Dev Cell 2:159–170

    Article  CAS  PubMed  Google Scholar 

  • Bossing T, Technau GM (1994) The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development 120:1895–1906

    CAS  PubMed  Google Scholar 

  • Boube M, Llimargas M, Casanova J (2000) Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech Dev 91:271–278

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Brunnberg S, Pettersson K, Rydin E, Matthews J, Hanberg A, Pongratz I (2003) The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proc Natl Acad Sci USA 100:6517–6522

    Article  CAS  PubMed  Google Scholar 

  • Brunner D, Oellers N, Szabad J, Biggs W, Zipursky SL, Hafen E (1994) Again-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signalling pathways. Cell 76:875–888

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) Stages of Drosophila embryogenesis. In: Embryonic T (ed) Development of Drosophila melanogaster. Springer-Verlag, Berlin, pp 9–102

    Google Scholar 

  • Certel K, Anderson MG, Shrigley RJ, Johnson WA (1996) Distinct variant DNA-binding sites determine cell- specific autoregulated expression of the Drosophila POU domain transcription factor drifter in midline glia or trachea. Mol Cell Biol 4:1813–1823

    Google Scholar 

  • Chihara T, Hayashi S (2000) Control of tracheal tubulogenesis by Wingless signaling. Development 127:4433–4442

    CAS  PubMed  Google Scholar 

  • Courey AJ, Tijan R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898

    Article  CAS  PubMed  Google Scholar 

  • Crews ST (1998) Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 12:607–620

    Article  CAS  PubMed  Google Scholar 

  • Crews ST, Fan CM (1999) Remembrance of things PAS: regulation of development by HLH-PAS proteins. Curr Opin Genet Dev 9:580–587

    Article  CAS  PubMed  Google Scholar 

  • Culi J, Aroca P, Modolell J, Mann RS (2006) jing is required for wing development and to establish the proximo-distal axis of the leg in Drosophila melanogaster. Genetics 173:255–266

    Article  CAS  PubMed  Google Scholar 

  • de Celis JF, Llimargas M, Casanova J (1995) ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 121:3405–3416

    PubMed  Google Scholar 

  • Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST (1999) The Spineless-Aristapedia and Tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 126:3937–3945

    CAS  PubMed  Google Scholar 

  • Estes P, Fulkerson E, Zhang Y (2008) Identification of motifs that are conserved in 12 Drosophila species and regulate midline glia vs. neuron expression. Genetics 178:787–799

    Article  CAS  PubMed  Google Scholar 

  • Gabay L, Scholz H, Golembo M, Klaes A, Shilo BZ, Klämbt C (1996) EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 122:3355–3362

    CAS  PubMed  Google Scholar 

  • Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein GCN4 of yeast. Cell 46:885–894

    Article  CAS  PubMed  Google Scholar 

  • Ikeya T, Hayashi S (1999) Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 126:4455–4463

    CAS  PubMed  Google Scholar 

  • Isaac DD, Andrew DJ (1996) Tubulogenesis in Drosophila: a requirement of the trachealess gene product. Genes Dev 10:103–117

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Urban J, Technau GM (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux’s Arch Dev Biol 204:284–307

    Article  Google Scholar 

  • Jiang L, Crews ST (2003) The Drosophila dysfusion basis helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Mol Cell Biol 23:5625–5637

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Crews ST (2007) Transcriptional specificity of Drosophila Dysfusion and the control of tracheal fusion cell gene expression. J Biol Chem 282:28659–28668

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Anthopoulos N, Wetsch B, Binari RC, Isaac DD, Andrew D, Woodgett JR, Manoukian AS (2001) Regulation of Drosophila tracheal system development by protein kinase B. Dev Cell 7:817–827

    Article  Google Scholar 

  • Karpen GH, Spradling AC (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 132:737–753

    CAS  PubMed  Google Scholar 

  • Kearney JB, Wheeler SB, Estes P, Parente B, Crews ST (2004) Gene expression profiling of the developing Drosophila CNS midline cells. Dev Biol 275:473–492

    Article  CAS  PubMed  Google Scholar 

  • Klämbt C (1993) The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development 117:163–176

    PubMed  Google Scholar 

  • Klämbt C, Glazer L, Shilo B-Z (1993) Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 6:1668–1678

    Article  Google Scholar 

  • Liu Y, Montell DJ (2001) jing: a downstream target of slbo required for developmental control of border cell migration. Development 128:321–330

    CAS  PubMed  Google Scholar 

  • Llimargas M, Casanova J (1997) Ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila. Development 124:3273–3281

    CAS  PubMed  Google Scholar 

  • Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Certel K, Gao Y, Niemitz E, Mosher J, Mukherjee A, Mutsuddi M, Huseinovic N, Crews ST, Johnson WA, Nambu JR (2000) Functional interactions between Drosophila bHLH/PAS, Sox and Pou transcription factors regulate CNS midline expression of the slit gene. J Neurosci 20:4596–4605

    CAS  PubMed  Google Scholar 

  • Manning G, Krasnow MA (1993) Development of the tracheal system. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, v1. Cold Spring Harbor Laboratory Press, New York, NY, pp 609–685

    Google Scholar 

  • Mortimer NT, Moberg KH (2007) The Drosophila F-box protein Archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system. Dev Biol 312:560–571

    Article  CAS  PubMed  Google Scholar 

  • Nye JA, Petersen JM, Gunther CV, Jonsen MD, Graves BJ (1992) Interaction of murine Ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Dev 6:975–990

    Article  CAS  PubMed  Google Scholar 

  • O’Neill M, Rebay I, Tjian R, Rubin GM (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78:137–147

    Article  PubMed  Google Scholar 

  • Ohshiro T, Saigo K (1997) Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developingtrachea. Development 124:3975–3986

    CAS  PubMed  Google Scholar 

  • Ohshiro T, Emori Y, Saigo K (2002) Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea. Mech Dev 114:3–11

    Article  CAS  PubMed  Google Scholar 

  • Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. In: Fyrberg E, Goldstein LSG (eds) Drosophila melanogaster: practical uses in cell and molecular biology. Academic, San Diego, pp 446–488

    Google Scholar 

  • Reichman-Fried M, Shilo B-Z (1995) Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation. Mech Dev 52:265–273

    Article  CAS  PubMed  Google Scholar 

  • Reichman-Fried M, Dickson B, Hafen F, Shilo B-Z (1994) Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev 8:428–439

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1983) Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res 11:6341–6351

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Rosenfeld MG (1997) POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225

    Article  CAS  PubMed  Google Scholar 

  • Samakovlis C, Hacohen N, Manning G, Sutherland DX, Guillemin K, Krasnow MA, (1996) Development of Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–1407

    CAS  PubMed  Google Scholar 

  • Sedaghat Y, Miranda W, Sonnenfeld MJ (2002) The jing Zn-finger transcription factor is a mediator of cellular differentiation in the Drosophila CNS midline and trachea. Development 129:2591–2606

    CAS  PubMed  Google Scholar 

  • Sonnenfeld MJ, Jacobs JR (1995) Apoptosis of the midline glia during Drosophila embryogenesis: a correlation with axon contact. Development 121:569–578

    CAS  PubMed  Google Scholar 

  • Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4571–4582

    CAS  PubMed  Google Scholar 

  • Sonnenfeld MJ, Barazesh N, Sedaghat Y, Fan C (2004) The jing and ras1 pathways are functionally related during CNS midline and tracheal development. Mech Dev 121:1531–1547

    Article  CAS  PubMed  Google Scholar 

  • Sonnenfeld MJ, Delvecchio C, Sun X (2005) Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Dev Genes Evol 215:221–229

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    Article  CAS  PubMed  Google Scholar 

  • Tajiri R, Tsuji T, Ueda R, Saigo K, Kojima T (2007) Fate determination of Drosophila leg distal regions by trachealess and tango through repression and stimulation, respectively, of Bar homeobox gene expression in the future pretarsus and tarsus. Dev Biol 303:461–473

    Article  CAS  PubMed  Google Scholar 

  • Thummel CS, Pirrotta V (1992) Technical notes: new pCaSpeR P-element vectors. Drosoph Inf Serv 71:150

    Google Scholar 

  • Tsruya R, Schlesinger A, Reich A, Gabay L, Sapir A, Shilo B-Z (2006) Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev 16:222–234

    Article  Google Scholar 

  • Urban S, Lee JR, Freeman M (2002) A family of Rhomboid intramembraneproteases activates all Drosophila membrane-tethered EGF ligands. EMBO J 21:4277–4286

    Article  CAS  PubMed  Google Scholar 

  • Wappner P, Gabay L, Shilo B-Z (1997) Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. Development 124:4707–4716

    CAS  PubMed  Google Scholar 

  • Ward MP, Mosher JT, Crews ST (1998) Regulation of Drosophila bHLH-PAS protein cellular localization during embryogenesis. Development 125:1599–1608

    CAS  PubMed  Google Scholar 

  • Weiss A, Charbonnier E, Ellertsdottir E, Tsirigos A, Wolf C, Schuh R, Pyrowolakis G, Affolter M (2010) A conserved activation element in BMP signalling during Drosophila development. Nat Struct Mol Bio 17:69–76

    Article  CAS  Google Scholar 

  • Wharton KA Jr, Crews ST (1994) CNS midline enhancers of the Drosophila slit and toll genes. Mech Dev 40:141–154

    Article  Google Scholar 

  • Wharton KA Jr, Franks RG, Kasai Y, Crews ST (1994) Control of CNS midline transcription by asymmetric E-box elements: similarity to xenobiotic responsive regulation. Development 120:3563–3569

    CAS  PubMed  Google Scholar 

  • Wheeler SR, Kearney JB, Guardiola AR, Crews ST (2006) Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells. Dev Biol 294:509–524

    Article  CAS  PubMed  Google Scholar 

  • Wilk R, Weizman I, Shilo B-Z (1996) trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev 10:93–102

    Article  CAS  PubMed  Google Scholar 

  • Zelzer E, Shilo B-Z (2000) Interactions between the bHLH-PAS protein trachealess and the POU-domain protein drifter, specifies tracheal cell fates. Mech Dev 91:163–173

    Article  CAS  PubMed  Google Scholar 

  • Zelzer E, Wappner P, Shilo B-Z (1997) The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes Dev 11:2079–2089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following for the fly strains and/or reagents: J. Woodgett, S. Crews, C. Klämbt, and J. Casanova. We thank the following for the technical assistance: Xuetao Sun, P. Albert and Anastasia Rogaeva, Bruno Pinheiro, Cathy Fan, and Carla Wood. We thank Stephanie Grainger and Bart Westendorp for their technical advice. This work was supported by grants from CIHR and NSERC to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Sonnenfeld.

Additional information

Communicated by P. Simpson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, T., Hackett, J., Sedaghat, Y. et al. The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway. Dev Genes Evol 220, 191–206 (2010). https://doi.org/10.1007/s00427-010-0339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0339-z

Keywords

Navigation