Skip to main content
Log in

Molecular control of serial module formation along the apical–basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The freshwater sponge Lubomirskia baicalensis (from Lake Baikal) is characterized by a body plan composed of serial modules which are arranged along an apical–basal axis. In shallow water, the sponge occurs only encrusting, while in deeper environment (>3 m), this species forms branches and grows in an arborescent manner. Each module is stabilized by bundles of spined oxeas (amphioxeae spicules). The spicules are surrounded by an organic matrix. cDNAs for structural proteins (silicatein and mannose-binding lectin (MBL)) as well as for one regulatory protein (mago nashi) were isolated from L. baicalensis. Surprisingly the silicatein α molecule exists in several, at least four, isoforms (a1 to a4). Expression studies revealed that the steady-state levels of transcripts for the silicateins, the mannose-binding lectin, and mago nashi are highest at the top of the branches, while only very low levels are found in cells at the base. Based on in situ hybridization studies, evidence is presented that the spicule formation (1) starts and is completed inside of the bundles, and (2) occurs together with the mannose-binding lectin from the surfaces of the bundles. The data suggest that the modules are sequentially formed. It is speculated that the expression of the silicateins and the mannose-binding lectin might be (partially) controlled by mago nashi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adell T, Grebenjuk VA, Wiens M, Müller WEG (2003) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213:421–434

    Article  CAS  PubMed  Google Scholar 

  • Adell T, Gamulin V, Peroviæ-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG (2004) Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 59:41–50

    Article  CAS  PubMed  Google Scholar 

  • Boswell RE, Prout ME, Steichen JC (1991) Mutation in a newly identified Drosophila melanogaster gene, mago nashi, disrupts germ cell formation and result in the formation of mirror-image asymmetrical double abdomen embryos. Development 113:373–384

    CAS  PubMed  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  CAS  PubMed  Google Scholar 

  • Coligan JE, Dunn BM, Speicher DW, Wingfield PT (2000) Current protocols in protein science. Wiley, New York, pp 10.4.1–10.4.36

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in protein. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Felsenstein J (1993) PHYLIP, ver. 3.5. University of Washington, Seattle

    Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. S. Karger, Basel

    Google Scholar 

  • Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG (2002) Induction of (2’–5’)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. Eur J Biochem 269:1382–1392

    Article  CAS  PubMed  Google Scholar 

  • Grunz H (ed) (2004) The vertebrate organizer. Springer, Berlin Heidelberg New York

  • Hirabayashi J, Tashidate H, Arata Y, Nishi N, Nakamura T, Mirashima H, Urashima T, Oka T, Futai M, Müller WEG, Yagi F, Kasai KI (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    CAS  PubMed  Google Scholar 

  • Hoshiyama D, Suga H, Iwabe Y, Koyanagi M, Nikoh N, Kuma K, Matsuda F, Honjo T, Miyata T (1998) Sponge Pax cDNA related to Pax-2/5/8 and ancient gene duplications in the Pax family. J Mol Evol 47:640–648

    Article  CAS  PubMed  Google Scholar 

  • Kaandorp JA (1994) Fractal modelling: growth and form in biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005a) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I: Biological and biochemical studies. Naturwissenschaften 92:128–133

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005b) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II: Molecular biological studies. Naturwissenschaften 92:134–138

    Article  CAS  PubMed  Google Scholar 

  • Klein NJ (2005) Mannose-binding lectin: do we need it? Mol Immunol 42:919–924

    Article  CAS  PubMed  Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  CAS  PubMed  Google Scholar 

  • Leys SP (2003) Comparative study of spiculogenesis in demosponge and hexactinellid larvae. Microsc Res Techn 62:300–311

    Article  CAS  Google Scholar 

  • Leys SP, Degnan BM (2002) Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr Biol 121:171–189

    Google Scholar 

  • Maldonado M, Carmona MC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitations. Nature 401:785–788

    Article  CAS  Google Scholar 

  • Moffatt JG, Khorana HG (1961) Nucleoside polysphosphates. X. The synthesis and some reactions of nucleoside-5’ phosphoro-morpholidates and related compounds. Improved methods for the preparation of nucleosides’ polyphosphates. J Am Chem Soc 83:649–658

    Article  CAS  Google Scholar 

  • Mort JS (2002) Cathepsin L. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, Amsterdam, pp 617–624

    Google Scholar 

  • Müller WEG (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from their cDNA analyses from the marine sponge Geodia cydonium. Cell Tissue Res 289:383–395

    Article  PubMed  Google Scholar 

  • Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol. 13. Wiley-VCH GmbH, Weinheim, pp 269–309

    Google Scholar 

  • Müller WEG, Müller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol 43:281–292

    Article  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Wiens M, Müller IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein–collagen–myotrophin. Prog Mol Subcell Biol 33:195–221

    PubMed  Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  • Müller WEG, Rothenberger M, Borejko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    Article  PubMed  Google Scholar 

  • Palacios IM (2002) RNA processing: splicing and the cytoplasmic localization of mRNA. Curr Biol 12:R50–R52

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–286

    Article  CAS  PubMed  Google Scholar 

  • Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Štifaniæ M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250

    Article  PubMed  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184

    Article  CAS  PubMed  Google Scholar 

  • Polak JM, McGee JD (1998) In situ hybridization. Oxford University Press, Oxford

    Google Scholar 

  • Pozzoli O, Gilardielli CN, Sordino P, Doniselli S, Lamia CL, Cotelli F (2004) Identification and expression pattern of mago nashi during zebrafish development. Gene Expr Patterns 5:265–272

    Article  CAS  PubMed  Google Scholar 

  • Schröder HC, Ushijima H, Krasko A, Gamulin V, Schütze J, Müller IM, Müller WEG (2003) Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal Metazoa: the tachylectin family. J Biol Chem 278:32810–32817

    Article  PubMed  CAS  Google Scholar 

  • Schröder HC, Peroviæ-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004) Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell Tissue Res 316:271–280

    Article  PubMed  CAS  Google Scholar 

  • Schröder HC, Perovic-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG (2005) Biosilica formation in spicules of the sponge Suberites domuncula: coordinated expression of a gene cluster. Genomics 85:666–678

    Article  PubMed  CAS  Google Scholar 

  • Schulze FE (1904) Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia”, vol IV. Gustav Fischer, Jena

    Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  PubMed  Google Scholar 

  • Sumerel JL, Morse D (2003) Biotechnological advances in biosilicification. Prog Mol Subcell Biol 33:225–247

    PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H, Suzuki Y (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278:20882–20889

    Article  CAS  PubMed  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Techn 62:279–299

    Article  CAS  Google Scholar 

  • Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süβwasserschwämme (Spongillidae). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Wiens M, Koziol C, Hassanein HMA, Batel R, Müller WEG (1998) Expression of the chaperones 14-3-3 and HSP70 induced by PCB 118 (2,3',4,4',5-pentachlorobiphenyl) in the marine sponge Geodia cydonium. Mar Ecol Prog Ser 165:247–257

    Article  CAS  Google Scholar 

  • Wiens M, Mangoni A, D’Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 57:1–16

    Article  CAS  Google Scholar 

  • Zhao XF, Colaizzo-Anas T, Nowak Norma J, Shows TB, Elliott RW, Aplan PD (1998) The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics 47:319–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung, Germany [project: Center of Excellence BIOTECmarin], the International Human Frontier Science Program, the WTZ Germany–Russia (German–Russian cooperation through the BMBF), and a grant from the Presidium of the Russian Academy of Science (no. 25.5) and from RFBR (no. 03-04-4985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller.

Additional information

Communicated by D.A. Weisblat

The sequences from Lubomirskia baicalensis have been deposited (EMBL/GenBank): the cDNA for silicatein-a2 (LBSILICAa2, accession number AJ968945), silicatein-a3 (LBSILICAa3, AJ968946), silicatein-a4 (LBSILICAa4, AJ968947), cathepsin L2 (LBCATL2, AJ968949), mannose-binding lectin (LBMBL, AJ968948), mago nashi (LBMAGNA, AJ968950), and α-tubulin (LBTUB, AJ971711). The sequences for cathepsin L from Aphrocallistes vastus (AVCATL, AJ968951), Geodia cydonium (CATL_GEOCY, Y10527), and mago nashi from Suberites domuncula were also deposited AM086401

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiens, M., Belikov, S.I., Kaluzhnaya, O.V. et al. Molecular control of serial module formation along the apical–basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216, 229–242 (2006). https://doi.org/10.1007/s00427-005-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0047-2

Keywords

Navigation