Skip to main content
Log in

The visual encoding of graspable unfamiliar objects

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We explored by eye-tracking the visual encoding modalities of participants (N = 20) involved in a free-observation task in which three repetitions of ten unfamiliar graspable objects were administered. Then, we analysed the temporal allocation (t = 1500 ms) of visual-spatial attention to objects’ manipulation (i.e., the part aimed at grasping the object) and functional (i.e., the part aimed at recognizing the function and identity of the object) areas. Within the first 750 ms, participants tended to shift their gaze on the functional areas while decreasing their attention on the manipulation areas. Then, participants reversed this trend, decreasing their visual-spatial attention to the functional areas while fixing the manipulation areas relatively more. Crucially, the global amount of visual-spatial attention for objects’ functional areas significantly decreased as an effect of stimuli repetition while remaining stable for the manipulation areas, thus indicating stimulus familiarity effects. These findings support the action reappraisal theoretical approach, which considers object/tool processing as abilities emerging from semantic, technical/mechanical, and sensorimotor knowledge integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The spatial disposition we used in this study represents the worst condition should one wish to emphasize semantic effects in modulating the temporal allocation of visual-spatial attention. Hence, we chose the worst experimental scenario with respect to the action reappraisal (Federico & Brandimonte, 2019).

References

  • Almeida, J., Fintzi, A. R., & Mahon, B. Z. (2013). Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex, 49(9), 2334–2344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambrosini, E., & Costantini, M. (2017). Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 360.

    PubMed  Google Scholar 

  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., Hämäläinen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 449–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortoletto, M., & Cunnington, R. (2010). Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. NeuroImage, 49(4), 3338–3348.

    Article  PubMed  Google Scholar 

  • Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33(2), 430–448.

    Article  PubMed  Google Scholar 

  • Chen, Q., Garcea, F. E., Jacobs, R. A., & Mahon, B. Z. (2018). Abstract representations of object-directed action in the left inferior parietal lobule. Cerebral Cortex, 28(6), 2162–2174.

    Article  PubMed  Google Scholar 

  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.

    Book  Google Scholar 

  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.

    Article  Google Scholar 

  • De Bellis, F., Magliacano, A., Sagliano, L., Conson, M., Grossi, D., & Trojano, L. (2020). Left inferior parietal and posterior temporal cortices mediate the effect of action observation on semantic processing of objects: Evidence from rTMS. Psychological Research Psychologische Forschung, 84(4), 1006–1019.

    Article  PubMed  Google Scholar 

  • Decroix, J., & Kalénine, S. (2019). What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information. Attention, Perception, & Psychophysics, 81(7), 2400–2409.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  PubMed  Google Scholar 

  • Federico, G., & Brandimonte, M. A. (2019). Tool and object affordances: an ecological eye-tracking study. Brain and Cognition, 135, 103582.

    Article  PubMed  Google Scholar 

  • Federico, G., & Brandimonte, M. A. (2020). Looking to recognise: The pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 10(1), 1–16.

    Article  Google Scholar 

  • Federico, G., & Brandimonte, M. A. (2022). Il ruolo del ragionamento e dell’elaborazione semantica nell’uso di utensili: La prospettiva integrata dell’action reappraisal. TOPIC-Temi Di Psicologia Dell’ordine Degli Psicologi Della Campania, 1(1), 10–53240.

    Google Scholar 

  • Federico, G., Ferrante, D., Marcatto, F., & Brandimonte, M. A. (2021a). How the fear of COVID-19 changed the way we look at human faces. PeerJ, 9, e11380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Federico, G., Osiurak, F., & Brandimonte, M. A. (2021b). Hazardous tools: the emergence of reasoning in human tool use. Psychological Research, 85, 3108–3118. https://doi.org/10.1007/s00426-020-01466-2.

  • Federico, G., Osiurak, F., Reynaud, E., & Brandimonte, M. A. (2021c). Semantic congruency effects of prime words on tool visual exploration. Brain and Cognition, 152, 105758.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. Hilldale, USA, 1(2), 67–82.

    Google Scholar 

  • Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645–1655.

    Article  PubMed  Google Scholar 

  • Gomez, M. A., Skiba, R. M., & Snow, J. C. (2018). Graspable objects grab attention more than images do. Psychological Science, 29(2), 206–218.

    Article  PubMed  Google Scholar 

  • Grezes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a Neuroimaging Study. Neuropsychologia, 40(2), 212–222.

    Article  PubMed  Google Scholar 

  • Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience, 6(4), 421–427.

    Article  PubMed  Google Scholar 

  • Horst, J. S., & Hout, M. C. (2016). The Novel Object and Unusual Name (NOUN) Database: A collection of novel images for use in experimental research. Behavior Research Methods, 48(4), 1393–1409.

    Article  PubMed  Google Scholar 

  • Humphreys, G. W., Kumar, S., Yoon, E. Y., Wulff, M., Roberts, K. L., & Riddoch, M. J. (2013). Attending to the possibilities of action. Philosophical Transactions of the Royal Society b: Biological Sciences, 368(1628), 20130059.

    Article  Google Scholar 

  • Humphreys, G. F., Lambon Ralph, M. A. L., & Simons, J. S. (2021). A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends in Neurosciences., 44, 452–463.

    Article  PubMed  Google Scholar 

  • Ishibashi, R., Pobric, G., Saito, S., & Lambon Ralph, M. A. (2016). The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 33(3–4), 241–256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.

    Article  PubMed  Google Scholar 

  • Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55.

    Article  Google Scholar 

  • Lesourd, M., Servant, M., Baumard, J., Reynaud, E., Ecochard, C., Medjaoui, F. T., Bartolo, A., & Osiurak, F. (2021). Semantic and action tool knowledge in the brain: identifying common and distinct networks. Neuropsychologia, 159, 107918.

    Article  PubMed  Google Scholar 

  • Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490.

    Article  Google Scholar 

  • Massen, C., & Prinz, W. (2007). Programming tool-use actions. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 692.

    PubMed  Google Scholar 

  • Masson, M. E., Bub, D. N., & Breuer, A. T. (2011). Priming of reach and grasp actions by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1470.

    PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785.

    Article  PubMed  Google Scholar 

  • Mirman, D. (2014). Growth curve analysis: A hands-on tutorial on using multilevel regression to analyze time course data. In: Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 36, No. 36).

  • Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2013). Visual and linguistic cues to graspable objects. Experimental Brain Research, 229(4), 545–559.

    Article  PubMed  Google Scholar 

  • Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225(2), 261–275.

    Article  PubMed  Google Scholar 

  • Natraj, N., Pella, Y. M., Borghi, A. M., & Wheaton, L. A. (2015). The visual encoding of tool–object affordances. Neuroscience, 310, 512–527.

    Article  PubMed  Google Scholar 

  • Nicholson, T., Roser, M., & Bach, P. (2017). Understanding the goals of everyday instrumental actions is primarily linked to object, not motor-kinematic, information: Evidence from fMRI. PLoS ONE, 12(1), e0169700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osiurak, F., & Badets, A. (2014). Pliers, not fingers: Tool-action effect in a motor intention paradigm. Cognition, 130(1), 66–73.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Osiurak, F., & Federico, G. (2021). Four ways of (mis-) conceiving embodiment in tool use. Synthese, 199, 3853–3879. https://doi.org/10.1007/s11229-020-02960-1.

  • Osiurak, F., Federico, G., Brandimonte, M. A., Reynaud, E., & Lesourd, M. (2020). On the temporal dynamics of tool use. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.579378.

  • Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience & Biobehavioral Reviews, 77, 403–417.

    Article  Google Scholar 

  • Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). WebGazer: Scalable webcam eye tracking using user interactions. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence-IJCAI 2016.

  • Pupíková, M., Šimko, P., Gajdoš, M., & Rektorová, I. (2021). Modulation of working memory and resting-state fMRI by tDCS of the right frontoparietal network. Neural Plasticity. https://doi.org/10.1155/2021/5594305

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynaud, E., Lesourd, M., Navarro, J., & Osiurak, F. (2016). On the neurocognitive origins of human tool use: A critical review of neuroimaging data. Neuroscience & Biobehavioral Reviews, 64, 421–437.

    Article  Google Scholar 

  • Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience, 6(1), 82–89.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146–157.

    Article  PubMed  Google Scholar 

  • Roberts, K. L., & Humphreys, G. W. (2010). Action relationships concatenate representations of separate objects in the ventral visual system. NeuroImage, 52(4), 1541–1548.

    Article  PubMed  Google Scholar 

  • Rothkegel, L. O., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., & Engbert, R. (2017). Temporal evolution of the central fixation bias in scene viewing. Journal of Vision, 17(13), 3–3.

    Article  PubMed  Google Scholar 

  • Semmelmann, K., & Weigelt, S. (2018). Online webcam-based eye tracking in cognitive science: A first look. Behavior Research Methods, 50(2), 451–465.

    Article  PubMed  Google Scholar 

  • Shapiro, L. (2019). Embodied cognition. Routledge.

    Book  Google Scholar 

  • Tamaki, Y., Nobusako, S., Takamura, Y., Miyawaki, Y., Terada, M., & Morioka, S. (2020). Effects of tool novelty and action demands on gaze searching during tool observation. Frontiers in Psychology, 11, 3060.

    Article  Google Scholar 

  • Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience & Biobehavioral Reviews, 37(3), 491–521.

    Article  Google Scholar 

  • Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830.

    PubMed  Google Scholar 

  • Van Der Linden, L., Mathôt, S., & Vitu, F. (2015). The role of object affordances and center of gravity in eye movements toward isolated daily-life objects. Journal of Vision, 15(5), 8–8.

    Article  PubMed  Google Scholar 

  • Van Elk, M., Van Schie, H. T., & Bekkering, H. (2008). Conceptual knowledge for understanding other’s actions is organized primarily around action goals. Experimental Brain Research, 189(1), 99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nature Communications, 10(1), 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Federico.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federico, G., Osiurak, F., Brandimonte, M.A. et al. The visual encoding of graspable unfamiliar objects. Psychological Research 87, 452–461 (2023). https://doi.org/10.1007/s00426-022-01673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-022-01673-z

Navigation