Skip to main content
Log in

Individual differences in cognitive plasticity: an investigation of training curves in younger and older adults

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

To date, cognitive intervention research has provided mixed but nevertheless promising evidence with respect to the effects of cognitive training on untrained tasks (transfer). However, the mechanisms behind learning, training effects and their predictors are not fully understood. Moreover, individual differences, which may constitute an important factor impacting training outcome, are usually neglected. We suggest investigating individual training performance across training sessions in order to gain finer-grained knowledge of training gains, on the one hand, and assessing the potential impact of predictors such as age and fluid intelligence on learning rate, on the other hand. To this aim, we propose to model individual learning curves to examine the intra-individual change in training as well as inter-individual differences in intra-individual change. We recommend introducing a latent growth curve model (LGCM) analysis, a method frequently applied to learning data but rarely used in cognitive training research. Such advanced analyses of the training phase allow identifying factors to be respected when designing effective tailor-made training interventions. To illustrate the proposed approach, a LGCM analysis using data of a 10-day working memory training study in younger and older adults is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbuckle, J. L. (2009). Amos (Version 18.0) [Computer Program]. Chicago: SPSS.

  • Bach, M. (1996). The “Freiburg visual acuity test”: Automatic measurement of visual acuity. Optometry and Vision Science, 73, 49–53.

    Article  PubMed  Google Scholar 

  • Ball, K., Edwards, J. D., & Ross, L. A. (2007). Cognitive interventions and aging: The impact of speed of processing training on cognitive and everyday functions. Journals of Gerontology: Psychological Sciences, 62B, 19–31.

    Article  Google Scholar 

  • Baltes, P. B. (1997). On the incomplete architecture of human ontogeny: Selection, optimization, and compensation as foundation of developmental theory. American Psychologist, 52, 366–380.

    Article  PubMed  Google Scholar 

  • Baltes, P. B., & Baltes, M. M. (1990). Successful aging: Perspectives from the behavioral sciences. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Baltes, P. B., & Kliegl, R. (1992). Further testing of limits of cognitive plasticity: Negative age differences in a mnemonic skill are robust. Developmental Psychology, 28, 121–125.

    Article  Google Scholar 

  • Baltes, P. B., Kliegl, R., & Dittmann-Kohli, F. (1988). On the locus of training gains in research on the plasticity of fluid intelligence in old age. Journal of Educational Psychology, 80, 392–400.

    Article  Google Scholar 

  • Baltes, P. B., & Lindenberger, U. (1988). On the range of cognitive plasticity in old age as a function of experience: 15 years of intervention research. Behavior Therapy, 19, 283–300.

    Article  Google Scholar 

  • Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12, 12–21.

    Article  PubMed  Google Scholar 

  • Bissig, D., & Lustig, C. (2007). Training memory: Who benefits from memory training? Psychological Science, 8, 720–726.

    Article  Google Scholar 

  • Borella, E., Carretti, B., Riboldi, F., & Beni, R. D. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25, 767–778.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5, 49–62.

    Article  PubMed  Google Scholar 

  • Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in human neuroscience, 6, 1–7.

    Article  Google Scholar 

  • Bürki, C. N. (2012). Cognitive training in younger and older adults: Effects on brain and behavior. Doctoral Thesis, University of Geneva, Geneva, Switzerland. http://archive-ouverte.unige.ch/unige:26490.

  • Buschkuehl, M., Jaeggi, S. M., Hutchison, S., Perrig-Chiello, P., Däpp, C., Müller, M., et al. (2008). Impact of working memory training on memory performance in old-old adults. Psychology and Aging, 23, 743–753.

    Article  PubMed  Google Scholar 

  • Carretti, B., Borella, E., & Beni, R. D. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Experimental Psychology, 54, 311–320.

    Article  PubMed  Google Scholar 

  • Chicherio, C. (2006). Contrôle exécutif et réseaux neurofonctionnels au cours du vieillissement normal: Un test de l’hypothèse de dé-différenciation cognitive. Unpuplished Doctoral Thesis, Université de Genève, Genève, Suisse.

  • Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23, 720–730.

    Article  PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.

    Article  PubMed  Google Scholar 

  • de Ribaupierre, A. (2001). Working memory and attentional processes across the lifespan. In P. Graf & N. Otha (Eds.), Lifespan development of human memory (pp. 59–80). Cambridge, MA: MIT Press.

    Google Scholar 

  • de Ribaupierre, A., & Bailleux, C. (1995). Development of attentional capacity in childhood: A longitudinal study. In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 45–70). Mahwah: Lauwrence Erlbaum.

    Google Scholar 

  • de Ribaupierre, A., Fagot, D., & Dirk, J. (2009). Déclin et plasticité des fonctions cognitives avec l’âge: Une question de différences individuelles? In M. Oris, E. Widmer, A. de Ribaupierre, D. Joye, D. Spini, G. Labouvie-Vief, et al. (Eds.), Transitions dans le parcours de vie et construction des inégalités (pp. 313–333). Lausanne, Switzerland: Presses Polytechniques et Universitaires Romandes.

    Google Scholar 

  • de Ribaupierre, A., Fagot, D., & Lecerf, T. (2011). Working memory capacity and its role in cognitive development. In P. Barrouillet & V. Gaillard (Eds.), Cognitive development and working memory (pp. 105–133). East Sussex: Psychology Press.

    Google Scholar 

  • de Ribaupierre, A., & Ludwig, C. (2003). Age differences and divided attention: Is there a general deficit? Experimental Aging Research, 29, 79–105.

    Article  PubMed  Google Scholar 

  • de Ribaupierre, A., Poget, L., & Pons, F. (2005). The age variable in cognitive developmental psychology. In C. Sauvain-Dugerdil, H. Leridon, & N. Mascie-Taylor (Eds.), Human clocks. The bio-cultural meanings of age (pp. 101–123). Bern, Switzerland: Peter Lang.

    Google Scholar 

  • de Ribaupierre, A., Pons, F., and Poget, L. (2003). L’âge en psychologie du développement cognitif : Une variable explicative ? In J.-P. F. S. Cavalli (Ed.), L’avenir : Attentes, projets (dés)illusions, ouvertures. Hommages à Christian Lalive d’Epinay Lausanne: Réalités sociales.

  • Delaloye, C., Ludwig, C., Borella, E., Chicherio, C., & de Ribaupierre, A. (2008). L’Empan de lecture comme épreuve mesurant la capacité de mémoire de travail: normes basées sur une population francophone de 775 adultes jeunes et âgés. Revue européenne de psychologie appliquée, 58, 89–103.

    Article  Google Scholar 

  • Deltour, J. J. (1993). Echelle de Vocabulaire Mill Hill de J. C. Raven. Braine de Chateau, Belgium: Editions L’Application des Techniques Modern S.P.R.L.

  • Duncan, T. E., & Duncan, S. C. (2009). The ABC’s of LGM: An introductory guide to latent variable growth curve modeling. Social and Personality Psychology Compass, 3, 979–991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth curve modeling: Concepts, issues, and application (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An introduction to latent variable growth curve modeling: Concepts, issues and applications. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Edwards, J. D., Wadley, V. G., Myers, R. S., Roenker, D. L., Cissell, G. M., & Ball, K. K. (2002). Transfer of a speed of processing: Intervention to near and far cognitive functions. Gerontology, 48, 329–340.

    Article  PubMed  Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory. Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Gaillard, V., Destrebecqz, A., Michiels, S., & Cleeremans, A. (2009). Effects of age and practice in sequence learning: A graded account of ageing, learning, and control. European Journal of Cognitive Psychology, 21, 255–282.

    Article  Google Scholar 

  • Gross, A. L., Rebok, G. W., Unverzagt, F. W., Willis, S. L., & Brandt, J. (2011). Cognitive predictors of everyday functioning in older adults: Results from the ACTIVE cognitive intervention trial. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 66B, 557–566.

    Article  PubMed Central  Google Scholar 

  • Hager, W., & Hasselhorn, M. (1998). The effectiveness of the cognitive training for children from a differential perspective: A metaevaluation. Learning and Instruction, 8, 411–438.

    Article  Google Scholar 

  • Hertzog, C., & Dunlosky, J. (2012). Metacognitive approaches can promote transfer of training: Comment on McDaniel and Bugg. Journal of Applied Research in Memory and Cognition, 1, 61–63.

    Article  Google Scholar 

  • Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 1–65.

    Google Scholar 

  • Howard, D. V., Howard, J. H, Jr, Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004). Implicit sequence learning: Effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55.

    Article  Google Scholar 

  • Hultsch, D. F., MacDonald, S. W. S., Hunter, M. A., Levy-Bencheton, J., & Strauss, E. (2000). Intraindividual variability in cognitive performance in older adults: Comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology, 14, 588–598.

    Article  PubMed  Google Scholar 

  • Jackson, J. J., Hill, P. L., Payne, B. R., Roberts, B. W., & Stine-Morrow, E. A. L. (2012). Can an old dog learn (and want to experience) new tricks? Cognitive training increases openness to experience in older adults. Psychology and Aging, 27, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 6829–6833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning: Implications for training and transfer. Intelligence, 38, 625–635.

    Article  Google Scholar 

  • Jones, R. N., Rosenberg, A. L., Morris, J. N., Allaire, J. C., McCoy, K. J. M., Marsiske, M., et al. (2005). A growth curve model of learning acquisition among cognitively normal older adults. Experimental Aging Research, 31, 291–312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12, 978–990.

    Article  PubMed  Google Scholar 

  • Kliegel, M., & Bürki, C. (2012). Memory training interventions require a tailor-made approach. Journal of Applied Research in Memory and Cognition, 1, 58–60.

    Article  Google Scholar 

  • Kliegl, R., Smith, J., & Baltes, P. B. (1989). Testing-the-limits and the study of adult age differences in cognitive plasticity of a mnemonic skill. Developmental Psychology, 25, 247–256.

    Article  Google Scholar 

  • Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26, 894–904.

    Article  Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD: A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24, 781–791.

    Article  PubMed  Google Scholar 

  • Li, K. Z. H., & Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neuroscience and Biobehavioral Reviews, 26, 777–783.

    Article  PubMed  Google Scholar 

  • Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23, 731–742.

    Article  PubMed  Google Scholar 

  • Lövdén, M., Brehmer, Y., Li, S.-C., and Lindenberger, U. (2012). Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in human neuroscience, 6.

  • Lövdén, M., Ghisletta, P., & Lindenberger, U. (2004). Cognition in the Berlin aging study (BASE): The first 10 years. Aging, Neuropsychology, and Cognition, 11, 104–133.

    Article  Google Scholar 

  • Ludwig, C. (2005). Age and individual differences in attentional control: A behavioral study. Unpuplished Doctoral Thesis, Université de Genève, Genève, Suisse.

  • Ludwig, C., Borella, E., Tettamanti, M., & de Ribaupierre, A. (2010). Adult age differences in the Color Stroop Test: A comparison between an Item-by-item and a Blocked version. Archives of Gerontology and Geriatrics, 51, 135–142.

    Article  PubMed  Google Scholar 

  • Ludwig, C., Chicherio, C., Terraneo, L., Magistretti, P., Ribaupierre, A. D., & Slosman, D. (2008). Functional imaging studies of cognition using 99mTc-HMPAO SPECT: Empirical validation using the n-back working memory paradigm. European Journal of Nuclear Medicine and Molecular Imaging, 35, 695–703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences, 103, 12523–12528.

    Article  Google Scholar 

  • McDaniel, M. A., & Bugg, J. M. (2012). Memory training interventions: What has been forgotten? Journal of Applied Research in Memory and Cognition, 1, 45–50.

    Article  Google Scholar 

  • Muthén, B. (1991). Analysis of longitudinal data using latent variable models with varying parameters. In L. M. C. J. L. Horn (Ed.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (Vol. 1, pp. 1–17). Washington, DC: American Psychological Association.

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.

    Article  PubMed  Google Scholar 

  • Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P. M. J., Carpenter, T. A., et al. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.

    Article  PubMed  Google Scholar 

  • Parkin, A. J. (1993). Implicit memory across the lifespan. In P. Graf & M. E. J. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 191–206). Hillsdale, NJ, England: Lawrence Erlbaum Associates.

    Google Scholar 

  • Perrig, W. J., Hollenstein, M., & Oelhafen, S. (2009). Can we improve fluid intelligence with training on working memory in persons with intellectual disabilities? Journal of Cognitive Education and Psychology, 8, 148–164.

    Article  Google Scholar 

  • Preacher, K. J., Wichman, A. L., MacCallum, R. C., and Briggs, N. E. (2008). Latent growth curve modeling: Sage Publications, Inc.

  • Ram, N., Rabbitt, P., Stollery, B., & Nesselroade, J. R. (2005). Cognitive performance inconsistency: Intraindividual change and variability. Psychology and Aging, 20, 623–633.

    Article  PubMed  Google Scholar 

  • Rast, P. (2011). Verbal knowledge, working memory, and processing speed as predictors of verbal learning in older adults. Developmental Psychology, 47, 1490–1498.

    Article  PubMed  Google Scholar 

  • Raven, J. C. (1958). Standard progressive matrices. Sets A, B, C, D and E. Oxford: Psychologist Press Ldt.

    Google Scholar 

  • Raven, J. C. (1962). Advanced progressive matrices. Set II. Oxford: Psychologist Press Ldt.

    Google Scholar 

  • Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for raven’s progressive matrices and vocabulary scales. Section 5: The mill hill vocabulary scale. San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142, 359–379.

    Article  Google Scholar 

  • Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26, 813–822.

    Article  PubMed  Google Scholar 

  • Saczynski, J. S., Willis, S. L., & Schaie, K. W. (2002). Strategy use in reasoning training with older adults. Aging, Neuropsychology and Cognition, 9, 48–60.

    Article  Google Scholar 

  • Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult age differences in working memory. Developmental Psychology, 27, 763–776.

    Article  Google Scholar 

  • Schaie, K. W., & Willis, S. L. (1986). Can decline in adult intellectual functioning be reversed? Developmental Psychology, 22, 223–232.

    Article  Google Scholar 

  • Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 1–11.

    Google Scholar 

  • Shing, Y. L., Brehmer, Y., & Li, S.-C. (2008). Cognitive plasticity and training across the lifespan. In O.-S. Tan & A. S.-H. Seng (Eds.), Cognitive modifiability in learning and assessment: International perspectives (pp. 59–82). Singapore: Thomson Learning.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628.

    Article  PubMed  Google Scholar 

  • Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology, 22, 461–479.

    PubMed  Google Scholar 

  • Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the National Academy of Sciences, 105, 6791–6792.

    Article  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions: III. Functions involving attention, observation and discrimination. Psychological Review, 8, 553–564.

    Article  Google Scholar 

  • Tisak, J., & Meredith, W. (1990). Descriptive and associative developmental models. In A. V. Eye (Ed.), Statistical methods in longitudinal research (Vol. 2, pp. 387–406). Boston: Academic Press.

    Google Scholar 

  • Voelkle, M. C. (2007). Latent growth curve modeling as an integrative approach to the analysis of change. Psychology Science, 49, 375.

    Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory: a single-subject analysis. Physiology and Behavior, 92, 186–192.

    Article  PubMed  Google Scholar 

  • Willis, S. L. (2001). Methodological issues in behavioral intervention research with the elderly. In K. W. Schaie & J. E. Birren (Eds.), Handbook of the psychology of aging (5th ed., pp. 78–108). San Diego, CA: Academic Press.

    Google Scholar 

  • Willis, S. L., Blieszner, R., & Baltes, P. B. (1981). Intellectual training research in aging: Modification of performance on the fluid ability of figural relations. Journal of Educational Psychology, 73, 41–50.

    Article  Google Scholar 

  • Willis, S. L., Jay, G. M., Diehl, M., & Marsiske, M. (1992). Longitudinal change and prediction of everyday task competence in the elderly. Research on aging, 14, 68–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis, S. L., & Schaie, K. W. (2009). Cognitive training and plasticity: Theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27, 375–389.

    PubMed  PubMed Central  Google Scholar 

  • Willis, S. L., Schaie, K. W., & Martin, M. (2009). Cognitive plasticity. In V. L. Bengtson, N. P. D. Gans, & M. Silverstein (Eds.), Handbook of theories of aging (pp. 295–322). New York: Springer.

    Google Scholar 

  • Zelinski, E. M. (2012). Are strategies necessary to improve memory? Journal of Applied Research in Memory and Cognition, 1, 56–57.

    Article  Google Scholar 

  • Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2012). Potentials and limits of plasticity induced by working memory training in old–old age. Gerontology, 58, 79–87.

    Article  PubMed  Google Scholar 

  • Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., and Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50, 304–315.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Hedwig Widmer Foundation, Zurich, Switzerland. The authors thank Philippe Golay and Paolo Ghisletta for the support regarding the application and the selection of the latent growth curve model. This study is based on Céline Bürki’s doctoral dissertation (Bürki 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline N. Bürki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürki, C.N., Ludwig, C., Chicherio, C. et al. Individual differences in cognitive plasticity: an investigation of training curves in younger and older adults. Psychological Research 78, 821–835 (2014). https://doi.org/10.1007/s00426-014-0559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0559-3

Keywords

Navigation