Skip to main content
Log in

Working memory demands modulate cognitive control in the Stroop paradigm

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

One important task of cognitive control is to regulate behavior by resolving information processing conflicts. In the Stroop task, e.g., incongruent trials lead to conflict-related enhancements of cognitive control and to improved behavioral performance in subsequent trials. Several studies suggested that these cognitive control processes are functionally and anatomically related to working memory (WM) functions. The present study investigated this suggestion and tested whether these control processes are modulated by concurrent WM demands. For this purpose, we performed three experiments in which we combined different WM tasks with the Stroop paradigm and measured their effects on cognitive control. We found that high WM demands led to a suppression of conflict-triggered cognitive control, whereas our findings suggest that this suppression effect is rather due to WM updating than to maintenance demands. We explain our findings by assuming that WM processes interfere with conflict-triggered cognitive control, harming the efficiency of these control processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.

    Google Scholar 

  • Behringer, J. (1993). Experimental run-time system (ERTS), Version 3.11. Frankfurt: BeriSoft.

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    Article  PubMed  Google Scholar 

  • Boy, F., Husain, M., & Sumner, P. (2010). Unconscious inhibition separates two forms of cognitive control. Proceedings of the National Academy of Sciences, 107, 11134–11139.

    Article  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5, 49–62.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex error detection and the online monitoring of performance. Science, 280, 747–749.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.

    Article  PubMed  Google Scholar 

  • Davelaar, E., & Stevens, J. (2009). Sequential dependencies in the Eriksen flanker task: A direct comparison of two competing accounts. Psychonomic Bulletin & Review, 19, 121–126.

    Article  Google Scholar 

  • Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 477–486.

    Article  PubMed  Google Scholar 

  • Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380–390.

    Article  Google Scholar 

  • Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380.

    Article  PubMed  Google Scholar 

  • Egner, T., Delano, M., & Hirsch, J. (2007). Separate conflict-specific cognitive control mechanisms in the human brain. Neuroimage, 35, 940–948.

    Article  PubMed  Google Scholar 

  • Egner, T., & Hirsch, J. (2005a). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790.

    Article  PubMed  Google Scholar 

  • Egner, T., & Hirsch, J. (2005b). Where memory meets attention: neural substrates of negative priming. Journal of Cognitive Neuroscience, 17, 1774–1784.

    Article  PubMed  Google Scholar 

  • Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26, 1714–1720.

    Article  PubMed  Google Scholar 

  • Fischer, R., Dreisbach, G., & Goschke, T. (2008). Context-sensitive adjustments of cognitive control: conflict-adaptation effects are modulated by processing demands of the ongoing task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 712–718.

    Article  PubMed  Google Scholar 

  • Fischer, R., Plessow, F., Kunde, W., & Kiesel, A. (2010). Trial-to-trial modulations of the Simon effect in conditions of attentional limitations: Evidence from dual tasks. Journal of Experimental Psychology: Human Perception and Performance, 36, 1576–1594.

    Article  PubMed  Google Scholar 

  • Fox, E. (1995). Negative priming from ignored distractors in visual selection: A review. Psychonomic Bulletin & Review, 2, 145–173.

    Article  Google Scholar 

  • Funes, M. F., Lupiáñez, J., & Humphreys, G. (2010). Sustained vs. transient control: Evidence of a behavioral dissociation. Cognition, 114, 338–347.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., Li, S. J., & Stein, E. A. (2000). A parametric manipulation of cerebral executive functioning. Cerebral Cortex, 10, 585–592.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96, 8301–8306.

    Article  Google Scholar 

  • Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.

    Article  Google Scholar 

  • Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: a review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193–225). New York: Academic Press.

    Google Scholar 

  • Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.

    Article  PubMed  Google Scholar 

  • Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1, 69–82.

    Article  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.

    Article  Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.

    Article  PubMed  Google Scholar 

  • Kinsbourne, M., & Hicks, R. E. (1978). Functional cerebral space: A model for overflow, transfer, and interference effects in human performance. In J. Requin (Ed.), Attention and performance VII (pp. 345–362). Hillsdale: Erlbaum.

    Google Scholar 

  • Klingberg, T. (1998). Concurrent performance of two working memory tasks: potential mechanisms of interference. Cerebral Cortex, 8, 593–601.

    Article  PubMed  Google Scholar 

  • Kornblum, S. (1994). The way irrelevant dimensions are processed depends on what they overlap with: The case of Stroop- and Simon-like stimuli. Psychological Research, 56, 130–135.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus–response compatibility—A model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Kornblum, S., & Lee, J. W. (1995). Stimulus–response compatibility with relevant and irrelevant stimulus dimensions that do and do not overlap with the response. Journal of Experimental Psychology: Human Perception and Performance, 21, 855–875.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Stevens, G. T., Whipple, A., & Requin, J. (1999). The effects of irrelevant stimuli: I. The time course of stimulus–stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25, 688–714.

    Article  Google Scholar 

  • Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339–354.

    Article  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    Article  PubMed  Google Scholar 

  • Masaki, H., Falkenstein, M., Stürmer, B., Pinkpank, T., & Sommer, W. (2007). Does the error negativity reflect response conflict strength? Evidence from a Simon task. Psychophysiology, 44, 579–585.

    Article  PubMed  Google Scholar 

  • May, C. P., Kane, M. J., & Hasher, L. (1995). Determinants of negative priming. Psychological Bulletin, 118, 35–54.

    Article  PubMed  Google Scholar 

  • Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects do not require executive control. Nature Neuroscience, 6, 450–452.

    PubMed  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  PubMed  Google Scholar 

  • Morishima, Y., Okuda, J., & Sakai, K. (2010). Reactive mechanisms of cognitive control system. Cerebral Cortex, 20, 2675–2683.

    Article  PubMed  Google Scholar 

  • Morris, N., & Jones, D. M. (1990). Memory updating in working memory: the role of the central executive. British Journal of Psychology, 81, 111–121.

    Article  Google Scholar 

  • Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: steady state or decay? Journal of Experimental Psychology. Learning, Memory, and Cogniton, 18, 565–576.

    Article  Google Scholar 

  • Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum Press.

    Google Scholar 

  • Pavone, E. F., Marzi, C. A., & Girelli, M. (2009). Does subliminal visual perception have an error-monitoring system? European Journal of Neuroscience, 30, 1424–1431.

    Article  PubMed  Google Scholar 

  • Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H. C., et al. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13, 427–440.

    Article  PubMed  Google Scholar 

  • Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23, 3218–3227.

    Article  PubMed  Google Scholar 

  • Puccioni, O. & Vallesi, A. (in press). Sequential congruency effects: disentangling priming and conflict adaptation. Psychological Research.

  • Scherbaum, S., Fischer, R., Dshemuchadse, M., & Goschke, T. (2011). The dynamics of cognitive control: Evidence for within-trial conflict adaptation from frequency-tagged EEG. Psychophysiology, 48, 591–600.

    Article  PubMed  Google Scholar 

  • Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136, 241–255.

    Article  Google Scholar 

  • Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    Article  PubMed  Google Scholar 

  • Stürmer, B., & Leuthold, H. (2003). Control over response priming in visuomotor processing: A lateralized event-related potential study. Experimental Brain Research, 153, 35–44.

    Article  Google Scholar 

  • Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based priming in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28, 1345–1363.

    Article  PubMed  Google Scholar 

  • Stürmer, B., Seiss, E., & Leuthold, H. (2005). Executive control in the Simon task: A dual-task examination of response priming and its suppression. European Journal of Cognitive Psychology, 17, 590–618.

    Article  Google Scholar 

  • Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., et al. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41, 357–370.

    Article  PubMed  Google Scholar 

  • Taylor, P. C., Nobre, A. C., & Rushworth, M. F. (2007). Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. Journal of Neuroscience, 27, 11343–11353.

    Article  PubMed  Google Scholar 

  • Ullsperger, M., & von Cramon, D. Y. (2006). The role of intact frontostriatal circuits in error processing. Journal of Cognitive Neuroscience, 18, 651–664.

    Article  PubMed  Google Scholar 

  • Van Gaal, S., Lamme, V., & Ridderinkhof, R. (2010). Unconsciously triggered conflict adaptation. PLoS ONE, 5, e11508.

    Article  PubMed  Google Scholar 

  • van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation: Evidence for a role of affect in executive control. Psychological Science, 20, 1473–1477.

    Article  PubMed  Google Scholar 

  • van Steenbergen, H., Band, G. P. H., & Hommel, B. (2011). Threat but not arousal narrows attention: Evidence from pupil dilation and saccade control. Frontiers in Psychology, 2, 281.

    PubMed  Google Scholar 

  • Ward, A., & Mann, T. (2000). Don’t mind if I do: Disinhibited eating under cognitive load. Journal of Personality and Social Psychology, 78, 753–763.

    Article  PubMed  Google Scholar 

  • Wendt, M., Kluwe, R. H., & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32, 644–667.

    Article  PubMed  Google Scholar 

  • Wühr, P., & Biebl, R. (2011). The role of working memory in spatial S-R correspondence effects. Journal of Experimental Psychology: Human Perception and Performance, 37, 442–667.

    Article  PubMed  Google Scholar 

  • Wühr, P., & Kunde, W. (2008). Die kognitive regulation von Handlungskonflikten. Psychologische Rundschau, 59, 207–216.

    Article  Google Scholar 

  • Yeung, N., Cohen, J. D., & Botvinick, M. M. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.

    Article  PubMed  Google Scholar 

  • Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus–stimulus and stimulus–response compatibility. Cognitive Psychology, 38, 386–432.

    Article  PubMed  Google Scholar 

  • Zhao, X., Chen, A., & West, R. (2010). The influence of working memory load on the Simon effect. Psychonomic Bulletin & Review, 17, 687–692.

    Article  Google Scholar 

Download references

Acknowledgments

The present research was supported by a grant of the German Re-search Foundation to T.S. (last author) as well as by a grant of CoTeSys (No. 439) to T.S. (last author). The study was performed within a Master thesis project of A.S. (first author) which was supervised by T.S. (last author). A.S. was supported by a PhD scholarship of the Bavarian Elite Aid Act (BayEFG). Correspondence concerning this article should be addressed to Alexander Soutschek, Ludwig-Maximilians-Universität Munich, Department Psychology, Leopoldstr. 13, 80802 Munich, Germany. Electronic mail should be addressed to Alexander.Soutschek@psy.lmu.de or to schubert@psychologie.hu-berlin.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soutschek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soutschek, A., Strobach, T. & Schubert, T. Working memory demands modulate cognitive control in the Stroop paradigm. Psychological Research 77, 333–347 (2013). https://doi.org/10.1007/s00426-012-0429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0429-9

Keywords

Navigation