Skip to main content
Log in

AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis.

Abstract

Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All relevant data can be found within the manuscript and its supporting materials.

References

  • Abel S, Theologis A (2010) Odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Shen G, Li G, Liu Z, Arif M, Wei Q, Men S (2019) The Arabidopsis nucleoporin NUP1 is essential for megasporogenesis and early stages of pollen development. Plant Cell Rep 38:59–74

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN (2018) Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47:306–318

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Li G, Qu D, Li X, Wang Y (2020) Into the seed: auxin controls seed development and grain yield. Int J Mol Sci 21:1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol 154:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, Ditengou FA, Palme K, Simon R, Colombo L (2013) Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS ONE 8:e66148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, Skůpa P, Pollmann S, Mravec J, Petrášek J, Zažímalová E, Honys D, Rolčík J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941

    Article  PubMed  Google Scholar 

  • Doucet J, Lee HK, Goring DR (2016) Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci 21:1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY (2020) FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579:561–566

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo DD, Köhler C (2018) Auxin: a molecular trigger of seed development. Genes Dev 32:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr Biol 16:2143–2149

    Article  CAS  PubMed  Google Scholar 

  • Friml J (2022) Fourteen stations of auxin. Cold Spring Harb Perspect Biol 14:a039859

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426(6963):147–153

    Article  CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    Article  PubMed  Google Scholar 

  • Hu LQ, Chang JH, Yu SX, Jiang YT, Li RH, Zheng JX, Zhang YJ, Xue HW, Lin WH (2022) PIN3 positively regulates the late initiation of ovule primordia in Arabidopsis thaliana. PLoS Genet 18:e1010077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson E, Vivian-Smith A, Offringa R, Sundberg E (2017) Auxin homeostasis in Arabidopsis ovules is anther-dependent at maturation and changes dynamically upon fertilization. Front Plant Sci 8:1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74:486–497

    Article  CAS  PubMed  Google Scholar 

  • Lituiev DS, Krohn NG, Müller B, Jackson D, Hellriegel B, Dresselhaus T, Grossniklaus U (2013) Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 140:4544–4553

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu B, Chen X, Zhu H, Zou C, Men S (2018) AUX1 acts upstream of PIN2 in regulating root gravitropism. Biochem Biophys Res Commun 507:433–436

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Luo Q, Tan C, Song J, Zhang T, Men S (2023) Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant J 13:1259–1277

    Article  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panoli A, Martin MV, Alandete-Saez M, Simon M, Neff C, Swarup R, Bellido A, Yuan L, Pagnussat GC, Sundaresan V (2015) Auxin import and local auxin biosynthesis are required for mitotic divisions, cell expansion and cell specification during female gametophyte development in Arabidopsis thaliana. PLoS ONE 10:e0126164

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterization of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19:611–622

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Liang ZZ, Wu YN, Zhou XQ, Xu M, Jiang LW, Li S, Zhang Y (2023) Embryo sac development relies on symplastic signals from ovular integuments in Arabidopsis. Plant J. https://doi.org/10.1111/tpj.16368

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert HS, Crhak Khaitova L, Mroue S, Benková E (2015a) The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J Exp Bot 66:5029–5042

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015b) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–711

    CAS  PubMed  Google Scholar 

  • Robert HS, Park C, Gutierrez CL, Wojcikowska B, Pencik A, Novak O, Chen J, Grunewald W, Dresselhaus T, Friml J, Laux T (2018) Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat Plants 4:548–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y (2017) The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiol 174:2274–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2015) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  PubMed  Google Scholar 

  • Song J, Sun S, Ren H, Grison M, Boutté Y, Bai W, Men S (2019) The SMO1 family of sterol 4α-methyl oxidases is essential for auxin- and cytokinin-regulated embryogenesis. Plant Physiol 181:578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Bhosale R (2019) Developmental roles of AUX1/LAX auxin influx carriers in plants. Front Plant Sci 10:1306

    Article  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M, Bougourd S (2010) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105:277–289

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yuan Z, Zhao Z, Li C, Zhang X, Liang H, Liu Y, Xu Q, Liu H (2020) Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. J Integr Plant Biol 62:247–255

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Guo X, Xiao Q, Zhu J, Cheung AY, Yuan L, Vierling E, Xu S (2021) Auxin efflux controls orderly nucellar degeneration and expansion of the female gametophyte in Arabidopsis. New Phytol 230:2261–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Tian L, Sun MX, Huang XY, Zhu J, Guan YF, Jia QS, Yang ZN (2013) AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol 162:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhang Q, Zhao K, Luo Q, Bao S, Liu H, Men S (2017) The Arabidopsis GPR1 gene negatively affects pollen germination, pollen tube growth, and gametophyte senescence. Int J Mol Sci 18(6):1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao X, Tian L, Yang J, Zhao YN, Zhu YX, Dai X, Zhao Y, Yang ZN (2018) Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genet 14:e1007397

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He P, Ma X, Yang Z, Pang C, Yu J, Wang G, Friml J, Xiao G (2019) Auxin-mediated statolith production for root gravitropism. New Phytol 224:761–774

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang T, Li L, Zhang X, Yang T, Liu C, Chu J, Zheng B (2021) The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. J Genet Genom 48:123–133

    Article  CAS  Google Scholar 

  • Zheng Y, Wang D, Ye S, Chen W, Li G, Xu Z, Bai S, Zhao F (2021) Auxin guides germ-cell specification in Arabidopsis anthers. Proc Natl Acad Sci USA 118:e2101492118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou LZ, Li S, Feng QN, Zhang YL, Zhao X, Zeng YL, Wang H, Jiang L, Zhang Y (2013) Protein S-ACYL Transferase10 is critical for development and salt tolerance in Arabidopsis. Plant Cell 25:1093–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Qi-Jun Chen for providing the CRISPR/Cas9 plasmids. This work was supported by the National Natural Science Foundation of China (31870230, 32070281, and 91417308 to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhen Men.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 KB)

Supplementary file2 (PDF 1074 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Liang, M., Luo, Q. et al. AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis. Planta 258, 68 (2023). https://doi.org/10.1007/s00425-023-04219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04219-8

Keywords

Navigation