Skip to main content

Advertisement

Log in

Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils.

Abstract

Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil–water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Aghdam MS, Luo Z, Jannatizadeh A, Sheikh-Assadi M, Sharafi Y, Farmani B, Fard JR, Razavi F (2019) Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chem 275:549–556

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, Ren J, Ma R, Liu A, Chen S (2020) Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci Hortic 265:109205

    Article  CAS  Google Scholar 

  • Al-Huqail AA, Khan MN, Ali HM, Siddiqui MH, Al-Huqail AA, AlZuaibr FM, Al-Muwayhi MA, Marraiki N, Al-Humaid L (2020) Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicol Environ Saf 201:110822

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Gill RA, Ulhassan Z, Zhang N, Hussain S, Zhang K, Huang Q, Sagir M, Tahir MB, Gill MB, Mwamba TM (2023) Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes. Ecotoxicol Environ Saf 252:114624

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU (2021a) melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr 21:1842–1855

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK (2021b) Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10513-0

    Article  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S (2021c) Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiol Plant 172:820–846

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shu H, Hao Y, Zhou Y, Mumtaz MA, Wang Z (2021d) Vanadium toxicity induced changes in growth, antioxidant profiling, and vanadium uptake in pepper (Capsicum annum L.) seedlings. Horticulturae 8:28

    Article  Google Scholar 

  • Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P (2022a) Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem 185:188–197

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Lal MK, Tiwari RK, Shakoor A (2022b) Melatonin mitigates cadmium toxicity by promoting root architecture and mineral homeostasis of tomato genotypes. J Soil Sci Plant Nutr 22:1112–1128

    Article  CAS  Google Scholar 

  • Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62:e12401

    Article  Google Scholar 

  • Arnao MB, Hemández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 4:58–63

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res 2:152–168

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Öztürk M, Gücel S (2016) Cadmium (Cd) and lead (Pb) induced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean [Vigna radiata (L.) Wilczek]. Commun Soil Sci Plant Anal 47:405–413

    CAS  Google Scholar 

  • Asif M, Pervez A, Irshad U, Mehmood Q, Ahmad R (2020) Melatonin and plant growth-promoting rhizobacteria alleviate the cadmium and arsenic stresses and increase the growth of Spinacia oleracea L. Plant Soil Environ 66:234–241

    Article  CAS  Google Scholar 

  • Ayyaz A, Amir M, Umer S, Iqbal M, Bano H, Gul HS, Noor Y, Javed M, Athar HR, Zafar ZU, Farooq MA (2020) Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon 6(7):e04364

    Article  PubMed  PubMed Central  Google Scholar 

  • Banu Doğanlar Z (2013) Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba L. minor and spirodela polyrhiza. Chem Speciat Bioavailab 25:79–88

    Article  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao YY, Qi CD, Li S, Wang Z, Wang X, Wang J, Guo YD (2019) Melatonin alleviates copper toxicity via improving copper sequestration and ROS scavenging in cucumber. Plant Cell Physiol 60:562–574

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Qi WD, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant J 52:223–239

    Article  CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  Google Scholar 

  • Devi R, Behera B, Raza MB, Mangal V, Altaf MA, Kumar R, Kumar A, Tiwari RK, Lal MK, Singh B (2021) An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00702-x

    Article  Google Scholar 

  • Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171:1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit P, Mukherjee PK, Sherkhane PD (2011) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276

    CAS  PubMed  Google Scholar 

  • Farouk S, Al-Amri SM (2019) Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicol Environ Saf 180:333–347

    Article  CAS  PubMed  Google Scholar 

  • Feigl G, Lehotai N, Molnár A, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:18661875

    Article  Google Scholar 

  • Gao H, Zhang ZK, Chai HK, Cheng N, Yang Y, Wang DN, Yang T, Cao W (2016) Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol Technol 118:103–110

    Article  CAS  Google Scholar 

  • Goodarzi A, Namdjoyan S, Soorki AA (2020) Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicol Environ Saf 201:110853

    Article  CAS  PubMed  Google Scholar 

  • Hacicsevki A, Baba B (2018) An overview of melatonin as an antioxidant molecule: a biochemical approach. Melatonin Mol Biol Clin Pharm Approaches 5:59–85

    Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan M, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J (2018) Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 8:1–12

    Article  Google Scholar 

  • Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agri Food Chem 67:10563–10576

    Article  CAS  Google Scholar 

  • Hoque M, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain M, Sayed M, Hasan M, Skalicky M (2021) Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. Int J Mol Sci 22(21):11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Fu Q, Zheng J, Zhang A, Wang H (2020) Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. Hortic Res 7:1–15

    Article  CAS  Google Scholar 

  • Ibrahim MH, Chee Kong Y, Mohd Zain NA (2017) Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules 22:1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Dai S, Wang B, Xie Z, Li J, Wang L, Huang J (2021) Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice. Environ Sci Nano 8:1042–1056

    Article  CAS  Google Scholar 

  • Kaya C, Okant M, Ugurlar F (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin_induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 168:256–277

    CAS  PubMed  Google Scholar 

  • Khan A, Jie Z, Xiangjun K, Ullah N, Short AW, Diao Y, Zhou R, Xiong YC (2023) Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. J Hazard Mater 445:130530

    Article  CAS  PubMed  Google Scholar 

  • Kobylinska A, Reiter RJ, Posmyk MM (2017) Melatonin protects cultured tobacco cells against lead-induced cell death via inhibition of cytochrome c translocation. Front Plant Sci 8:1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Kołodziejczyk I, Dzitko K, Szewczyk R, Posmyk MM (2016) Exogenous melatonin expediently modifies proteome of maize (Zea mays L.) embryo during seed germination. Acta Physiol Plant 38(6):1–18

    Article  Google Scholar 

  • Kong JQ (2015) Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 5:62587–62603

    Article  CAS  Google Scholar 

  • Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plantar 33:35–51

    Article  CAS  Google Scholar 

  • Lei K, Sun S, Zhong K, Li S, Hu H, Sun C, Zheng Q, Tian Z, Dai T, Sun J (2021) Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. Ecotoxicol Environ Saf 220:112241

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hasan MK, Li C, Ahammed GJ, Xia X, Shi K, Zhou Y, Reiter RJ, Yu J, Xu M (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61:291–302

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ahammed GJ, Zhang XN (2021) Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 403:123922

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Pan KY, Hung CH, Huang HE, Chen CL, Feng TY, Huang LF (2013) Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 14:20913–20929

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Li J, Chen F, Liao MA, Tang Y, Liang D, Xia H, Lai Y, Wang X, Chen C (2018) Effects of melatonin on the growth and cadmium characteristics of Cyphomandra betacea seedlings. Environ Monit Assess 190:1–8

    Article  CAS  Google Scholar 

  • Ma XQ, Zhang J, Burgess P, Rossi S, Huang BR (2018) Interactive effects of melatonin and cytokinin on alleviating drought induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1–11

    Article  CAS  Google Scholar 

  • Malar S, Manikandan R, Favas PJ, Sahi SV, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania Grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257

    Article  CAS  PubMed  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum Sativum. Acta Physiol Plant 30:629–637

    Article  Google Scholar 

  • Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2022) Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10591-8

    Article  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HA, Moussa HR, Rgab MHE-DS (2021) Does exogenous application of melatonin ameliorate lead toxicity in Eruca vesicaria plants? Egypt J Bot 61:33–40

    Google Scholar 

  • Moustafa-Farag M, Elkelish A, Dafea M, Khan M, Arnao MB, Abdelhamid MT, El-Ezz AA, Almoneafy A, Mahmoud A, Awad M, Li L (2020) Role of melatonin in plant tolerance to soil stressors: salinity, pH, and heavy metals. Molecules 25(22):5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabaei M, Amooaghaie R (2020) Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don Environ Sci Pollut Res 27:6981–6994

    Article  CAS  Google Scholar 

  • Namdjoyan S, Soorki AA, Elyasi N (2020) Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 29:108–118

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Giacomini B (2007) Sulfur metabolism and cadmium stress in higher plants. Plant Stress 1:1142–1156

    Google Scholar 

  • Nopparat C, Porter JE, Ebadi M, Govitrapong P (2010) The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 49:382–389

    Article  CAS  PubMed  Google Scholar 

  • Okant M, Kaya C (2019) The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environ Sci Pollut Res 26:11864–11874

    Article  CAS  Google Scholar 

  • Ou C, Cheng W, Wang Z, Yao X, Yang S (2023) Exogenous melatonin enhances CD stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. Ecotoxicol Environ Saf 252:114619

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Janda T, Szalai G (2018) Interactions between plant hormones and thiol-related heavy metal chelators. Plant Growth Regul 85:173–185

    Article  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM (2021) ROS and NO phytomelatonin-induced signaling mechanisms under metal toxicity in plants: a review. Antioxidants 10(5):775

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Poeggeler B, Thuermann S, Dose A (2002) Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res 33:20–30

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Yin L, Wang B (2019) Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiol Biochem 139:342–349

    Article  CAS  PubMed  Google Scholar 

  • Rajora N, Vats S, Raturi G, Thakral V, Kaur S, Rachappanavar V, Kumar M, Kesarwani AK, Sonah H, Sharma TR, Deshmukh R (2022) Seed priming with melatonin: a promising approach to combat abiotic stress in plants. Plant Stress 4:100071

    Article  CAS  Google Scholar 

  • Rehaman A, Mishra AK, Ferdose A, Per TS, Hanief M, Jan AT, Asgher M (2021) Melatonin in plant defense against abiotic stress. Forests 12(10):1404

    Article  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW et al (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105. https://doi.org/10.1016/j.chemosphere.05.013

    Article  CAS  PubMed  Google Scholar 

  • Saddhe AA, Malvankar MR, Karle SB, Kumar K (2019) Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants. Environ Exp Bot 161:86–97

    Article  CAS  Google Scholar 

  • Samanta S, Banerjee A, Roychoudhury A (2021) Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. Plant Cell Rep 40:1585–1602

    Article  CAS  PubMed  Google Scholar 

  • Sarafi E, Tsouvaltzis P, Chatzissavvidis C, Siomos A, Therios I (2017) Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiol Biochem 112:173–182

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the Cherry Rootstock PHL-C (Prunus Avium× Prunus Cerasus). Plant Physiol Biochem 61:162–168

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wu B, Yuan X, Cao YY, Chen X, Chen Y (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174

    Article  CAS  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Ibrahim AA, Alsadon A (2019) Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings. Ecotoxicol Environ Saf 180:656–667

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Tiwari M, Kidwai M (2020) Role of nitric oxide in overcoming heavy metal stress. Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. John Wiley & Sons Ltd., pp 214–237

    Chapter  Google Scholar 

  • Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YDA (2016) label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J Pineal Res 61:138–153

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Gao L, Xu L, Zheng Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J (2023) Melatonin alleviates chromium toxicity by altering chromium subcellular distribution and enhancing antioxidant metabolism in wheat seedlings. Environ Sci Pollut Res 144:216

    Google Scholar 

  • Tan DX, Manchester LC, Helton P, Reiter RJ (2007) Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2(6):514–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 85:607–623

    PubMed  Google Scholar 

  • Tang W, Liang L, Li R, Xie Y, Li X, Li H, Lin L, Huang Z, Sun B, Sun G, Tu L (2023) Effects of exogenous melatonin on the growth and cadmium accumulation of lettuce under cadmium-stress conditions. Environ Prog Sustain Energy 42:e14014

    Article  CAS  Google Scholar 

  • Tang Y, Li J, Li H (2015) Effects of exogenous melatonin on photosynthetic characteristics of eggplant (Solanum melongena L.) under cadmium stress. In: International Conference on Manufacturing Science and Engineering (ICMSE 2015)

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran L-SP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian SK, Xie RH, Wang HX, Hu Y, Ge J (2016) Calcium deficiency triggers phloem remobilization of cadmium in a hyperaccumulating species. Plant Physiol 172:2300–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RK, Lal MK, Naga KC, Kumar R, Chourasia KN, Subhash S, Kumar D, Sharma S (2020) Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic 272:109592

    Article  CAS  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021a) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant 172(2):1212–1226

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021b) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant molecular biology. Springer, pp 1–15

    Google Scholar 

  • Tousi S, Zoufan P, Ghahfarrokhie AR (2020) Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. Ecotoxicol Environ Saf 206:111403

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk DA (2013) Tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, An B, Wei Y, Reiter RJ, Shi H, Luo H, He C (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69(5):963–974

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Duan S, Zhou Z, Chen S, Wang D (2019) Foliar spraying of melatonin confers cadmium tolerance in Nicotiana tabacum L. Ecotoxicol Environ Saf 170:68–76

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Song J, Liu Z (2021) Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings. Environ Sci Pollut Res 28:15394–15405

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wei W, Li QT, Chu YN (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Ueda Y, Lai S, Frei M (2017) Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell Environ 40:570–584

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Wang Y, Zhang J, Gong X, Zhang Z, Sun J, Chen X, Wang Y (2021) Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Hortic Plant J 7(1):13–22

    Article  CAS  Google Scholar 

  • Xie C, Xiong X, Huang Z, Sun L, Ma J, Cai S, Yu F, Zhong W, Chen S, Li X (2018) Exogenous melatonin improves lead tolerance of bermudagrass through modulation of the antioxidant defense system. Int J Phytorem 20:1408–1417

    Article  CAS  Google Scholar 

  • Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L (2020) Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 69:e12659

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ren J, Lin X, Yang Z, Deng X, Ke Q (2023) Melatonin alleviates chromium toxicity in maize by modulation of cell wall polysaccharides biosynthesis, glutathione metabolism, and antioxidant capacity. Int J Mol Sci 24(4):3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Lv Y, Shi YN, Li T, Chen YC (2018) The role of phyto-melatonin and related metabolites in response to stress. Molecules 23:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 2013(54):15–23

    Article  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zeng B, Mao Y, Kong X, Wang X, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q (2017a) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44:961–968

    Article  CAS  PubMed  Google Scholar 

  • Zhang RM, Sun YK, Liu ZY, Jin W, Sun Y (2017b) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res 62:28226188

    Article  Google Scholar 

  • Zhang J, Li D, Wei J (2019) Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ Exp Bot 161:157–165

    Article  CAS  Google Scholar 

  • Zhang W, Cao J, Fan X, Jiang W (2020) Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci Technol 99:531–541

    Article  CAS  Google Scholar 

  • Zhao D, Wang R, Meng J, Li Z, Wu Y, Tao J (2017) Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia Jasminoides Ellis): leaf morphology, anatomy physiology and transcriptome. Sci Rep 7:1–19

    Google Scholar 

  • Zhao C, Nawaz G, Cao Q, Xu T (2022) Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Sci Hortic 291:110560

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milan Kumar Lal, Rahul Kumar Tiwari, Ravinder Kumar or Parvaiz Ahmed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, M.A., Sharma, N., Srivastava, D. et al. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. Planta 257, 115 (2023). https://doi.org/10.1007/s00425-023-04146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04146-8

Keywords

Navigation