Skip to main content
Log in

Deposition patterns of feruloylarabinoxylan during cell wall formation in moso bamboo

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The feruloylarabinoxylan deposition was initiated at the formation of the secondary cell wall, especially S2 layer in moso bamboo, which may affect crosslinking between cell wall components and plant growth.

Abstract

Hemicelluloses, major components of plant cell walls that are hydrogen bonded to cellulose and covalently bound to lignin, are crucial determinants of cell wall properties. Especially in commelinid monocotyledons, arabinoxylan is often esterified with ferulic acid, which is essential to crosslinking with cell wall components. However, the deposition patterns and localization of ferulic acid during cell wall formation remain unclear. In this study, developing moso bamboo (Phyllostachys pubescens) culms were used to elucidate deposition patterns of hemicelluloses including feruloylarabinoxylan. Ferulic acid content peaked with cessation of elongation growth, and thereafter decreased and remained stable as culm development proceeded. During primary cell wall (PCW) formation, xyloglucan and (1,3;1,4)-β-glucan signals were detected in all tissues. Along with culm development, arabinoxylan and feruloylarabinoxylan signals were sequentially observed in the protoxylem, vascular fibers and metaxylem, and parenchyma. Feruloylarabinoxylan signals were observed slightly later than arabinoxylan signals. Arabinoxylan signals were observed throughout the compound middle lamella and secondary cell wall (SCW), whereas the feruloylarabinoxylan signal was localized to the S2 layer of the SCW. These results indicate that the biosynthesis of hemicelluloses is regulated in accordance with cell wall layers. Feruloylarabinoxylan deposition may be initiated at the formation of SCW, especially S2 layer formation. Ferulic acid-mediated linkages of arabinoxylan-arabinoxylan and arabinoxylan-lignin would arise during SCW formation with the cessation of elongation growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and Supplementary Information files.

Abbreviations

CML:

Compound middle lamella

PCW:

Primary cell wall

SCW:

Secondary cell wall

S1 layer:

Outer layer of the secondary cell wall

S2 layer:

Middle layer of the secondary cell wall

UDP-Araf-FA:

UDP-feruloylarabinofuranose

References

  • Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112

    Article  CAS  PubMed  Google Scholar 

  • Azuma T, Okita N, Nanmori T, Yasuda T (2005) Changes in cell wall-bound phenolic acids in the internodes of submerged floating rice. Plant Prod Sci 8:441–446

    Article  CAS  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang HM, Jameell H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bento-Silva A, Patto MCV, Bronze MD (2018) Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem 246:360–378

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Fakharuzi D, Harris PJ (2019) Occurrence of fucosylated and non-fucosylated xyloglucans in the cell walls of monocotyledons: an immunofluorescence study. Plant Physiol Biochem 139:428–434

    Article  CAS  PubMed  Google Scholar 

  • Burr SJ, Fry SC (2009) Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase. Mol Plant 2:883–892

    Article  CAS  PubMed  Google Scholar 

  • Crowe JD, Hao P, Pattathil S, Pan H, Ding SY, Hodge DB, Jensen JK (2021) Xylan is critical for proper bundling and alignment of cellulose microfibrils in plant secondary cell walls. Front Plant Sci 12:737690

    Article  PubMed  PubMed Central  Google Scholar 

  • Buanafina MM de O (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872

  • de Souza WR, Martins PK, Freeman J, Pellny TK, Michaelson LV, Sampaio BL, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, de Oliveira PA, Campanha RB, Pacheco FT, Martarello DCI, Marchiosi R, Ferrarese-Filho O, dos Santos WD, Tramontina R, Squina FM, Centeno DC, Gaspar M, Braga MR, Tiné MAS, Ralph J, Mitchell RAC, Molinari HBC (2018) Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytol 218:81–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ (2015) Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. New Phytol 205:666–681

    Article  CAS  PubMed  Google Scholar 

  • Feijao C, Morreel K, Anders N, Tryfona T, Busse-Wicher M, Kotake T, Boerjan W, Dupree P (2022) Hydroxycinnamic acid-modified xylan side chains and their cross-linking products in rice cell walls are reduced in the xylosyl arabinosyl substitution of xylan 1 mutant. Plant J 109:1152–1167

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Azuma J, Marchessault RH, Morin FG, Aibara S, Okamura K (1993) Chemical composition change of bamboo accompanying its growth. Holzforschung 47:109–115

    Article  CAS  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  • Hara Y, Yokoyama R, Osakabe K, Toki S, Nishitani K (2014) Function of xyloglucan endotransglucosylase/hydrolases in rice. Ann Bot 114:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Hatfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7:2056

    Article  PubMed  PubMed Central  Google Scholar 

  • He XQ, Suzuki K, Kitamura S, Lin JX, Cui KM, Itoh T (2002) Toward understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol 43:186–195

    Article  CAS  PubMed  Google Scholar 

  • Hsieh YSY, Harris PJ (2009) Xyloglucans of monocotyledons have diverse structures. Mol Plant 2:943–965

    Article  CAS  PubMed  Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res 219:15–22

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1:163–176

    Article  CAS  Google Scholar 

  • Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic and ferulic acid in the cell wall of Avena coleoptiles—their relationships to mechanical properties of the cell wall. Physiol Plant 78:1–7

    Article  CAS  Google Scholar 

  • Karlen SD, Free HCA, Padmakshan D, Smith BG, Ralph J, Harris PJ (2018) Commelinid monocotyledon lignins are acylated by p-coumarate. Plant Physiol 177:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Ito S, Mitsuishi Y (2004) Further structural study of the barley and bamboo shoot xyloglucans by xyloglucanase. J Appl Glycosci 51:327–333

    Article  CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Daniel G (2012) Distribution of glucomannans and xylans in poplar xylem and their changes under tension stress. Planta 236:35–50

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Awano T, Yoshinaga A, Takabe K (2010) Temporal and spatial immunolocalization of glucomannansin dfferentiating earlywood tracheid cell walls of Cryptomeria japonica. Planta 232:545–554

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Awano T, Yoshinaga A, Takabe K (2011) Temporal and spatial diversities of the immunolabeling of mannan and xylan polysaccharides in differentiating earlywood ray cells and pits of Cryptomeria japonica. Planta 233:109–122

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Sandquist D, Sundberg B, Daniel G (2012) Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235:1315–1330

    Article  CAS  PubMed  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793

    Article  CAS  PubMed  Google Scholar 

  • Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WGT, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Marcus S, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 54:543–546

    Article  CAS  Google Scholar 

  • Meents MJ, Watanabe Y, Lacey S (2018) The cell biology of secondary cell wall biosynthesis. Ann Bot 121:1107–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migné C, Prensier G, Utille JP, Angibeaud P, Cornu A, Grenet E (1998) Immunocytochemical localisation of para-coumaric acid and feruloyl-arabinose in the cell walls of maize stem. J Sci Food Agric 78:373–381

    Article  Google Scholar 

  • Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P (2020) Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 37:919–961

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M (2015) NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6:288

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8:6538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamura H, Tanaka Y, Konishi M, Kashiwagi H (1991) Illustrated horticultural bamboo species in Japan. Haato, Tokyo

    Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 159:1933–1943

    Article  CAS  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    Article  CAS  PubMed  Google Scholar 

  • Pedersen HL, Fangel JU, McCleary B, Ruzanski C, Rydahl MG, Ralet MC, Farkas V, von Schantz L, Marcus SE, Andersen MCF, Field R, Ohlin M, Knox JP, Clausen MH, Willats WGT (2012) Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J Biol Chem 287:39429–39438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto S, Somssich M, Nakata MT, Unda F, Atsuzawa K, Kaneko Y, Wang T, Bågman AM, Gaudinier A, Yoshida K, Brady SM, Mansfield SD, Persson S, Mitsuda N (2018) Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nat Plants 4:777–783

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Crepeau MJ, Lahaye M, Thibault JF, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Isolation and structural determination of two 5,5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr Res 320:82–92

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Tsuyama T, Kamei I (2019) Rapid determination of thioglycolic acid lignin for various biomass samples. Mokuzaigakkaishi 65:25–32

    CAS  Google Scholar 

  • Shimada N, Munekata N, Tsuyama T, Matsushita Y, Fukushima K, Kijidani Y, Takabe K, Yazaki K, Kamei I (2021) Active transport of lignin precursors into membrane vesicles from lignifying tissues of bamboo. Plants 10:2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata N, Tsuyama T, Nagano S, Baba K, Yasuda Y, Sakamoto S, Mitsuda N, Taniguchi T (2021) Prior secondary cell wall formation is required for gelatinous layer deposition and posture control in gravi-stimulated aspen. Plant J 108:725–736

    Article  CAS  PubMed  Google Scholar 

  • Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11:269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416

    Article  CAS  Google Scholar 

  • Terrett OM, Dupree P (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol 56:97–104

    Article  CAS  PubMed  Google Scholar 

  • Tsuyama T, Shimada N, Motoda T, Matsushita Y, Kijidani Y, Fukushima K, Kamei I (2017) Lignification in developing culms of bamboo Sinobambusa tootsik. J Wood Sci 63:551–559

    Article  CAS  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Dixon RA (2012) On–off switches for secondary cell wall biosynthesis. Mol Plant 5:297–303

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang B, Hu R, Zhao X, Li H, Zhou G, Song L, Wu A (2019) Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis. Carbohydr Polym 221:127–136

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Bosch M, Knox JP (2013) Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. PLoS ONE 8:e82114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Cui D, Ye ZH (2019) Secondary cell wall biosynthesis. New Phytol 221:1703–1723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mr. Ken-ichi Matsuda for providing the bamboo samples; Dr. Kentaro Sakai, University of Miyazaki, for supporting ultramicrotome sectioning; and Dr. Takuya Tetsumura, University of Miyazaki, for supporting the cryosectioning. Transmission electron microscopy and a part of examination by fluorescence microscopy were conducted at the Frontier Science Center, University of Miyazaki. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant Nos. 15H02454 (KT), 20H03049 (TT)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Tsuyama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 598 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munekata, N., Tsuyama, T., Kamei, I. et al. Deposition patterns of feruloylarabinoxylan during cell wall formation in moso bamboo. Planta 256, 59 (2022). https://doi.org/10.1007/s00425-022-03970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03970-8

Keywords

Navigation