Skip to main content
Log in

OsAPL controls the nutrient transport systems in the leaf of rice (Oryza sativa L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

OsAPL positively controls the seedling growth and grain size in rice by targeting the plasma membrane H+-ATPase-encoding gene, OsRHA1, as well as drastically affects genes encoding H+-coupled secondary active transporters.

Abstract

Nutrient transport is a key component of both plant growth and environmental adaptation. Photosynthates and nutrients produced in the source organs (e.g., leaves) need to be transported to the sink organs (e.g., seeds). In rice, the unloading of nutrients occurs through apoplastic transport (i.e., across the membrane via transporters) and is dependent on the efficiency and number of transporters embedded in the cell membrane. However, the genetic mechanisms underlying the regulation of these transporters remain to be determined. Here we show that rice (Oryza sativa L., Kitaake) ALTERED PHLOEM DEVELOPMENT (OsAPL), homologous to a MYB family transcription factor promoting phloem development in Arabidopsis thaliana, regulates the number of transporters in rice. Overexpression of OsAPL leads to a 10% increase in grain yield at the heading stage. OsAPL acts as a transcriptional activator of OsRHA1, which encodes a subunit of the plasma membrane H+-ATPase (primary transporter). In addition, OsAPL strongly affects the expression of genes encoding H+-coupled secondary active transporters. Decreased expression of OsAPL leads to a decreased expression level of nutrient transporter genes. Taken together, our findings suggest the involvement of OsAPL in nutrients transport and crop yield accumulation in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The raw transcriptome data generated and analyzed in this study are available in the Sequence Read Archive with the identifier PRJNA603205. The raw ChIP-sequencing data generated and analyzed in this study are available in the Sequence Read Archive with the identifier PRJNA603254.

Abbreviations

APL:

Altered phloem development

DAG:

Days after germination

DEG:

Differentially expressed genes

OE:

Overexpression

PM:

Plasma membrane

SWEET:

Sugars will eventually be exported transporters

TF:

Transcription factor

References

  • Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    Article  CAS  PubMed  Google Scholar 

  • Biddick M, Hendriks A, Burns KC (2019) Plants obey (and disobey) the island rule. Proc Natl Acad Sci USA 116:17632–17634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  CAS  PubMed  Google Scholar 

  • Braun DM (2012) SWEET! The pathway is complete. Science 335:173–174

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (2016) The carbon (formerly dark) reactions of photosynthesis. Photosynth Res 128:215–217

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Ji D, Peng L, Guo J, Ma J, Zou M, Lu C, Zhang L (2009) LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol 150:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R (2013) Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25:1657–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duby G, Boutry M (2009) The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflüg Archiv Eur J Physiol 457:645–655

    Article  CAS  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113:7118–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566

    Article  PubMed  CAS  Google Scholar 

  • Haruta M, Gray WM, Sussman MR (2015) Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr Opin Plant Biol 28:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Science 342:837–838

    CAS  Google Scholar 

  • Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G (2015) An Arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors. Mol Biol Evol 32:1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at eraly stages of soybean nodule development. Mol Gene Genet 238:106–119

    Article  CAS  Google Scholar 

  • Lang D, Weiche B, Timmerhaus G, Richardt S, Riano-Pachon DM, Correa LGG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MS, Cortadellas N, Kichey T, Dubois F, Habash DZ, Araus JL (2006) Wheat nitrogen metabolism during grain filling: comparative role of glumes and the flag leaf. Planta 225:165–181

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213

    Article  CAS  PubMed  Google Scholar 

  • Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32:178–193

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, Gao G, Zhang Q, Luo L, Wang G, Xie W, Chen J, Yao W, Peng Y, Lei L, Lian X, Xiao J, Xu C, Li X, He Y (2014) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847

    Article  CAS  PubMed  Google Scholar 

  • Pryor KD, Leiting B (1997) High-level expression of soluble protein in Escherichia coli using a His(6)-tag and maltose-binding-protein double-affinity fusion system. Prot Exp Purif 10:309–319

    Article  CAS  Google Scholar 

  • Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59:2417–2424

    Article  CAS  PubMed Central  Google Scholar 

  • Ruzicka K, Ursache R, Hejatko J, Helariutta Y (2015) Xylem development - from the cradle to the grave. New Phytol 207:519–535

    Article  CAS  PubMed  Google Scholar 

  • Scofield GN, Hirose T, Aoki N, Furbank RT (2007) Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot 58:3155–3169

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Prot 9:2395–2410

    Article  CAS  Google Scholar 

  • Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42:51–72

    Article  PubMed  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738

    Article  CAS  PubMed  Google Scholar 

  • Stritzler M, Muniz Garcia MN, Schlesinger M, Ignacio Cortelezzi J, Andrea Capiati D (2017) The plasma membrane H+-ATPase gene family in Solanum tuberosum L. role of PHA1 in tuberization. J Exp Bot 68:4821–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • van Bel AJE, Koblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487

    Google Scholar 

  • Wang M, Chen C, Xu YY, Jiang RX, Han Y, Xu ZH, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Rep 22:409–417

    Article  CAS  Google Scholar 

  • Weih M, Hamner K, Pourazari F (2018) Analyzing plant nutrient uptake and utilization efficiencies: comparison between crops and approaches. Plant Soil 430:7–21

    Article  CAS  Google Scholar 

  • Xu X, Chi W, Sun X, Feng P, Guo H, Li J, Lin R, Lu C, Wang H, Leister D, Zhang L (2016) Convergence of light and chloroplast signals for de-etiolation through ABI4-HY5 and COP1. Nat Plants 2:16066

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Hao D, Cong Y, Jin M, Su Y (2015) The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Rep 34:321–330

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot 2:1565–1572

    Article  CAS  Google Scholar 

  • Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y (2017) OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell 43:731–743

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Joung JG, Zheng Y, Chen Y, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 2011:940–949

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministry of Agriculture and Rural Affairs of the Peoples’ Republic of China (2016ZX08009003-005). We would like to thank Dr. Dong Zhang (PlantTech Biotechnology Co., Ltd) for providing suggestions on the analysis of transcriptomic data and ChIP-seq data. Part of computational analyses are supported by the High-performance Computing Platform of Peking University, and we thank Dr. Chun Fan and Yin-Ping Ma for their assistance during the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Chen Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author Bai-Chen Wang will be responsible for material distributions.

Supplementary Information

Below is the link to the electronic supplementary material.

425_2022_3913_MOESM1_ESM.tif

Supplementary file1 Fig. S1 Schematic diagram of conserved domains in OsAPL and phylogenetic analysis of APL proteins in other species. a Schematic diagram of OsAPL. ATG and TAA, the start and termination codons, respectively. SANT, the ‘SWI3, ADA2, N-CoR and TFIIIB' DNA-binding domain. Myb-CC, the highly conserved LHEQLE sequence motif. b Alignment of APL proteins from selected species. ZosmaAPL, Zostera marina; SpAPL, Sphagnum fallax; PpAPL, Physcomitrella patens; MpAPL, Marchantia polymorpha; SvAPL, Setaria viridis; AtrAPL, Amborella trichopoda; OsAPL, Oryza sativa; ZmAPL, Zea mays; SbAPL, Sorghum bicolor; BdAPL, Brachypodium distachyon; AtAPL, Arabidopsis thaliana; PtAPL, Populus trichocarpa; BsAPL, Brachypodium stacei; PhAPL, Panicum hallii; GlymaAPL, Glycine max; MtAPL, Medicago truncatula; GoraiAPL, Gossypium raimondii and AhAPL, Arabidopsis halleri. The amino acid sequences from different species were retrieved from Phytozome 12.0 by searching for the keyword APL. c Phylogenetic tree of APL proteins from rice and 18 other species generated by MEGA 7.0. For each protein the species name and primary protein transcript is listed. (TIF 8323 KB)

425_2022_3913_MOESM2_ESM.tif

Supplementary file2 Fig. S2 APL sequence conservation. a Phylogenetic tree based on the protein sequences of APL and its orthologous genes (left). Schematic of the protein structures from 162 plant species, colored by amino acids are shown on the right. The SANT and Myb_CC domains are highlighted by black boxes. b The dN/dS for each codon in APL, as estimated by HYPHY48. The average dN/dS ratio is 0.48, indicating purifying selection. (TIF 14063 KB)

425_2022_3913_MOESM3_ESM.tif

Supplementary file3 Fig. S3 The negative control of in-situ hybridization and GUS staining in this study. Negative control of in-situ hybridization in leaf main veins (a), middle veins (b) and minor veins (c). Bars=20 μm (a) 10μm (b )and 2.5μm (c). d to f Negative control of GUS staining in leaf main veins (d), middle veins (e) and minor veins (f). Bars=20 μm (a) 10μm (b) and 2.5μm (c). (TIF 1514 KB)

425_2022_3913_MOESM4_ESM.tif

Supplementary file4 Fig. S4 Morphological analysis of inner epidermis cells of lemma in wild type and different OsAPL transgenic lines. a to c The morphology of inner epidermis cells of lemma of the wild type (WT), RNAi line 7 (RNAi7) and overexpression line 1 (OE1), respectively, at 15 days after pollination. Bars=40 μm. d and e Inner epidermis cell length (d) and width (e) for WT, RNAi7 and OE1.Values are shown as box plots (Student’s t-test, **P≤0.01, n=150). (TIF 6089 KB)

425_2022_3913_MOESM5_ESM.tif

Supplementary file5 Fig. S5 Histological analysis of endosperm at the grain-filling stage in wild type and different OsAPL transgenic lines. a to c The morphology of endosperm epidermis cells at 15 days after pollination in the wild type (WT), RNAi line 7 (RNAi7) and overexpression line 1 (OE1), respectively. Bars=40 μm. d and e Endosperm epidermis cell length (d) and width (e) for WT, RNAi7 and OE1. Values are shown as box plots (Student’s t-test, **P≤0.01, n=200). (TIF 3289 KB)

425_2022_3913_MOESM6_ESM.tif

Supplementary file6 Fig. S6 Functions of genes differentially expressed between OsAPL overexpression Line 1 and wild type at different developmental stages. a GO enrichment analysis of DEGs between wild type (WT) and AsAPL overexpression line 1 (OE1) identified in leaves at 7 days after germination. b and c GO enrichment analysis of DEGs between WT and OE1 identified in flag leaves and glumes, respectively, at 14 days after pollination. In a to c, GO terms associated with transport processes are highlighted in red. (TIF 13307 KB)

425_2022_3913_MOESM7_ESM.tif

Supplementary file7 Fig. S7 GO enrichment analysis of OsAPL target genes. Using an adjusted P-value <0.01 as the significance threshold, the majority of the target genes were classified into ten biological process, six cellular component and nine molecular function terms. Significantly enriched terms (FDR≤0.05) are shown. (TIF 2621 KB)

Supplementary file8 (DOCX 3164 KB)

Supplementary file9 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yang, MY., Zhao, BG. et al. OsAPL controls the nutrient transport systems in the leaf of rice (Oryza sativa L.). Planta 256, 11 (2022). https://doi.org/10.1007/s00425-022-03913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03913-3

Keywords

Navigation