Skip to main content
Log in

Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genome wide analysis, expression pattern analysis, and functional characterization of RAV genes highlight their roles in roots, stem development and hormonal response.

Abstract

RAV (Related to ABI3 and VP1) gene family members have been involved in tissues/organs growth and hormone signaling in various plant species. Here, we identified 247 RAVs from 12 different species with 33 RAV genes from G. hirsutum. Phylogenetic analysis classified RAV genes into four distinct groups. Analysis of gene structure showed that most GhRAVs lack introns. Motif distribution pattern and protein sequence logos indicated that GhRAV genes were highly conserved during the process of evolution. Promotor cis-acting elements revealed that promotor regions of GhRAV genes encode numerous elements related to plant growth, abiotic stresses and phytohormones. Chromosomal location information showed uneven distribution of 33 GhRAV genes on different chromosomes. Collinearity analysis identified 628 and 52 orthologous/ paralogous gene pairs in G. hirsutum and G. barbadense, respectively. Ka/Ks values indicated that GhRAV and GbRAV genes underwent strong purifying selection pressure. Selecton model and codon model selection revealed that GhRAV amino acids were under purifying selection and adaptive evolution exists among GhRAV proteins. Three dimensional structure of GhRAVs indicated the presence of numerous alpha helix and beta-barrels. Expression level revealed that some GhRAV genes exhibited high expression in roots (GhRAV3, GhRAV4, GhRAV11, GhRAV18, GhRAV20 and GhRAV30) and stem (GhRAV3 and GhRAV18), indicating their potential role in roots and stem development. GhRAV genes can be regulated by phytohormonal stresses (BL, JA and IAA). Our study provides a reference for future studies related to the functional analysis of GhRAVs in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed in this study included in published article and Additional files.

Abbreviations

BL:

Brassinolide

GA:

Gibberellic acid

IAA:

Indole -3-acetic acid

3D:

3 Dimension

PEG:

Polyethylene glycol

DPA:

Days post anthesis

References

  • Ali F, Qanmber G, Wei Z, Yu D, hui Li Y, Gan L, Li F, Wang Z (2020) Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC Genomics 21:1–15

    Google Scholar 

  • Alonso J (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:1849–1849 (vol 301, pg 653, 2003)

    CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson AC (1980) A note on the generalized information criterion for choice of a model. Biometrika 67:413–418

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Campo EM, Casano LM, Barreno E (2013) Evolutionary implications of intron–exon distribution and the properties and sequences of the RPL10A gene in eukaryotes. Mol Phylogenet Evol 66:857–867

    PubMed  Google Scholar 

  • Delport W, Scheffler K, Botha G, Gravenor MB, Muse SV, Kosakovsky Pond SL (2010) CodonTest: modeling amino acid substitution preferences in coding sequences. PLoS Comput Biol 6:e1000885

    PubMed  PubMed Central  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faiza A, Qanmber G, Yonghui L, Shuya M, Lili L, Zuoren Y, Zhi W, Fuguang L (2019) Genome-wide identification of Gossypium INDETERMINATE DOMAIN genes and their expression profiles in ovule development and abiotic stress responses. J Cotton Res 2:1–16

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu M, Kang H, Son S, Kim S, Nam K (2014) A subset of RAV transcription factors modulates drought and salt stress responses aba-independently in Arabidopsis. Plant Cell Physiol 55:1892–1904

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Humana Press, pp 571–607

    Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    CAS  PubMed  Google Scholar 

  • Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B (2002) Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    CAS  PubMed  Google Scholar 

  • Hu YX, Wang YH, Liu XF, Li JY (2004) Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res 14:8–15

    CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G (2010) RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22:1777–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantartzi SK, Ulloa M, Sacks E, Stewart JM (2009) Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 136:141–147

    CAS  PubMed  Google Scholar 

  • Kelley L, Mezulis S, Yates C, Wass M, Sternberg M (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols 10:845–858

    CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Stawiski E, Chappey C, Poon AF, Hughes G, Fearnhill E, Gravenor MB, Leigh Brown AJ, Frost SD (2009) An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1. PLoS Comput Biol 5:e1000581

    PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-F, Pu H-Y, Wang L-C, Sayler RJ, Yeh C-H, Wu S-J (2006) Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224:330–338

    CAS  PubMed  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    CAS  PubMed  Google Scholar 

  • Li C-W, Su R-C, Cheng C-P, You S-J, Hsieh T-H, Chao T-C, Chan M-T (2011) Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156:213–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Chai Z, Lin P, Huang C, Huang G, Xu L, Deng Z, Zhang M, Zhang Y, Zhao X (2020) Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC Genomics 21:1–17

    Google Scholar 

  • Liu Z, Qanmber G, Lu L, Qin W, Liu J, Li J, Ma S, Yang Z, Yang Z (2018) Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling. Sci China Life Sci 61:1566–1582

    CAS  PubMed  Google Scholar 

  • Lu Q, Zhao L, Li D, Hao D, Zhan Y, Li W (2014) A GmRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean. PLoS ONE 9:e89145

    PubMed  PubMed Central  Google Scholar 

  • Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S (2014) RAV genes: regulation of floral induction and beyond. Ann Bot 114:1459–1470

    PubMed  PubMed Central  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    CAS  PubMed  Google Scholar 

  • Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang C-X, Katsar CS, Lan T-H, Lin Y-R, Ming R (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    CAS  PubMed  Google Scholar 

  • Pond SK, Muse SV (2005) Site-to-site variation of synonymous substitution rates. Mol Biol Evol 22:2375–2385

    CAS  PubMed  Google Scholar 

  • Qanmber G, Daoqian Y, Jie L, Lingling W, Shuya M, Lili L, Zuoren Y, Fuguang L (2018) Genome-wide identification and expression analysis of Gossypium RING-H2 finger E3 ligase genes revealed their roles in fiber development, and phytohormone and abiotic stress responses. J Cotton Res 1:1–17

    Google Scholar 

  • Qanmber G, Ali F, Lu L, Mo H, Ma S, Wang Z, Yang Z (2019a) Identification of histone H3 (HH3) genes in Gossypium hirsutum revealed diverse expression during ovule development and stress responses. Genes 10:355

    CAS  PubMed Central  Google Scholar 

  • Qanmber G, Liu J, Yu D, Liu Z, Lu L, Mo H, Ma S, Wang Z, Yang Z (2019b) Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. Int J Mol Sci 20:1750

    CAS  PubMed Central  Google Scholar 

  • Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z (2019c) Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. J Exp Bot 70:4721–4736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SW, Gilbert W (2005) Complex early genes. Proc Natl Acad Sci 102:1986–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82:439–455

    CAS  PubMed  Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    CAS  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    CAS  PubMed  Google Scholar 

  • Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waltner JK, Peterson FC, Lytle BL, Volkman BF (2005) Structure of the B3 domain from Arabidopsis thaliana protein At1g16640. Protein Sci 14:2478–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Q, Guan X, Yang N, Wu H, Pan M, Liu B, Fang L, Yang S, Hu Y, Ye W (2016) Small interfering RNA s from bidirectional transcripts of Gh MML 3_A12 regulate cotton fiber development. New Phytol 210:1298–1310

    CAS  PubMed  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform 8:77–80

    CAS  Google Scholar 

  • Wang R, Liu L, Kong Z, Li S, Lu L, Chen G, Zhang J, Qanmber G, Liu Z (2021) Identification of GhLOG gene family revealed that GhLOG3 is involved in regulating salinity tolerance in cotton (Gossypium hirsutum L.). Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2021.06.011

    Article  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139

    Google Scholar 

  • Wolfe D, Dudek S, Ritchie MD, Pendergrass SA (2013) Visualizing genomic information across chromosomes with PhenoGram. BioData Min 6:1–12

    Google Scholar 

  • Woo HR, Kim JH, Kim J, Kim J, Lee U, Song I-J, Kim J-H, Lee H-Y, Nam HG, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61:3947–3957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zheng L, Qanmber G, Guo M, Wang Z, Yang Z (2021) Response of phytohormone mediated plant homeodomain (PHD) family to abiotic stress in upland cotton (Gossypium hirsutum spp.). BMC Plant Biol 21:1–20

    Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Gong Q, Wang L, Jin Y, Xi J, Li Z, Qin W, Yang Z, Lu L, Chen Q (2018) Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front Genet 9:33

    PubMed  PubMed Central  Google Scholar 

  • Yu D, Qanmber G, Lu L, Wang L, Li J, Yang Z, Liu Z, Li Y, Chen Q, Mendu V (2018) Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biol 18:1–18

    CAS  Google Scholar 

  • Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008a) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227:659–669

    CAS  PubMed  Google Scholar 

  • Zhao L, Luo Q, Yang C, Han Y, Li W (2008b) A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227:1389–1399

    CAS  PubMed  Google Scholar 

  • Zhao L, Hao D, Chen L, Lu Q, Zhang Y, Li Y, Duan Y, Li W (2012) Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. J Exp Bot 63:3257–3270

    CAS  PubMed  Google Scholar 

  • Zhao S-P, Xu Z-S, Zheng W-J, Zhao W, Wang Y-X, Yu T-F, Chen M, Zhou Y-B, Min D-H, Ma Y-Z (2017) Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Front Plant Sci 8:905

    PubMed  PubMed Central  Google Scholar 

  • Zheng L, Wu H, Qanmber G, Ali F, Wang L, Liu Z, Yu D, Wang Q, Xu A, Yang Z (2020) Genome-wide study of the GATL gene family in Gossypium hirsutum L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation. Genes 11:64

    CAS  PubMed Central  Google Scholar 

  • Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, Li Y (2019) Evolutionary analyses reveal diverged patterns of SQUAMOSA promoter binding protein-like (Spl) gene family in Oryza genus. Front Plant Sci 10:565

    PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Sun C-C, Zhou X-R, Xiong A-S, Zhang J (2011) Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Mol Biol Rep 38:3921–3928

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Huo Peng (Zhengzhou Research Center, Institute of Cotton Research of CAAS, Zhengzhou) for technical assistance.

Funding

This work was supported by the Major Research Plan of National Natural Science Foundation of China (NO.31690093), the Natural Science Foundation of Henan (No.212300410093), National Science and Technology Major Project of China (2016YFD0101006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Yu or Na Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1581 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, N., Lin, H., Kong, X. et al. Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.). Planta 255, 14 (2022). https://doi.org/10.1007/s00425-021-03782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03782-2

Keywords

Navigation