Skip to main content
Log in

Natural or light-induced pigment accumulation in grain amaranths coincides with enhanced resistance against insect herbivory

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation .

Abstract

Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of “green” and “red” Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Polturak et al. 2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BR:

Blue/red

cyclo-DOPA:

Cyclodihydroxyphenylalanine

DODA:

DOPA 4,5-dioxygenase

L-DOPA:

L-Dihydroxyphenylalanine

UPLC-MS:

Ultra-performance liquid chromatography system coupled to mass-spectrometry

References

  • Ahmad IM, Waldbauer GP, Friedman S (1989) A defined artificial diet for the larvae of Manduca sexta. Entomol Exp Appl 53:189–191

    Article  Google Scholar 

  • Azeredo HMC (2009) Betalains: properties, sources, applications, and stability-a review. Int J Food Sci Technol 44:2365–2376

    Article  CAS  Google Scholar 

  • Bahramnejad B, Erickson LR, Goodwin PH (2010) Induction of expression and increased susceptibility due to silencing a 4,5-DOPA dioxygenase extradiol-like gene of Nicotina benthamiana in the interaction with the hemibiotrophic pathogens, Colletotrichum destructivum, Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci. Plant Sci 178:147–157

    Article  CAS  Google Scholar 

  • Bascuñán-Godoy L, Sanhueza C, Hernández CE, Cifuentes L, Pinto K, Álvarez R, González-Teuber M, Bravo LA (2018) Nitrogen supply affects photosynthesis and photoprotective attributes during drought-induced senescence in quinoa. Front Plant Sci 9:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Bean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A (2018) Gain of- function mutations in beet DODA2 identify key residues for betalain pigment evolution. New Phytol 219:287–296

    Article  CAS  PubMed  Google Scholar 

  • Berardi AE, Frey FM, Denton EM, Wells JH (2013) Betalain color morphs exhibit differential growth, defensive ability, and pollen tube growth rates in Mirabilis jalapa (Nyctaginaceae). Int J Plant Sci 174:1229–1238

    Article  Google Scholar 

  • Brockington SF, Yang Y, Gandía-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA (2015) Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol 207:1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casique-Arroyo G, Martinez-Gallardo N, González de la Vara L, Delano-Frier JP (2014) Betacyanin biosynthetic genes and enzymes are differentially induced by (a)biotic stress in Amaranthus hypochondriacus. PLoS ONE 9:e99012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castellanos-Arévalo AP, Estrada-Luna A, Cabrera-Ponce JL, Valencia-Lozano E, Herrera-Ubaldo H, de Folter S, Blanco-Labra A, Delano-Frier JP (2020) Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Rep 39:1143–1160

    Article  PubMed  CAS  Google Scholar 

  • Castrillón-Arbeláez PA, Martinez-Gallardo N, Arnaut HA, Tiessen A, Delano-Frier JP (2012) Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory. BMC Plant Biol 12:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang YC, Chiu YC, Tsao NW, Chou YL, Tan CM, Chiang YH, Liao PC, Lee YC, Hsieh LC, Wang SY, Yang JY (2021) Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Sci Rep 11:6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christinet L, Burdet FRX, Zaiko M, Hinz U, Zryd JP (2004) Characterization and functional identification of a novel plant 4, 5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol 134:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H-H, Schwinn KE, Ngo HM, Lewis DH, Massey B, Calcott KE, Crowhurst R, Joyce DC, Gould KS, Davies KM, Harrison DK (2015) Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain producing species. Front Plant Sci 6:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Clement J, Mabry T (1996) Pigment evolution in the Caryophyllales: a systematic overview. Bot Acta 109:360–367

    Article  CAS  Google Scholar 

  • Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (2016) The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome 9:1–14

    Article  CAS  Google Scholar 

  • Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F (2019) First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. Mbio 10:e00345–e003419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada Hernández MG (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 12:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285

    Article  CAS  Google Scholar 

  • Gechev TS, Breusegem FV, Stone JM, Denev I, Loloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Girod PA, Zrӱb JP (1991a) Biogenesis of betalains: Purification and partial characterization of dopa 4, 5-dioxygenase from Amanita muscaria. Phytochemistry 30:169–174

    Article  CAS  Google Scholar 

  • Girod PA, Zrӱb JP (1991b) Secondary metabolism in cultured red beet (Beta vulgaris L.) cells: Differential regulation of betaxanthin and betacyanin biosynthesis. Plant Cell Tiss Org Cult 25:1–12

    Article  CAS  Google Scholar 

  • González-Rodríguez T, Cisneros-Hernández I, Acosta Bayona J, Ramírez-Chavez E, Martínez-Gallardo N, Mellado-Mojica E, López-Pérez MG, Molina-Torres J, Délano-Frier J (2019) Identification of factors linked to higher water-deficit stress tolerance in Amaranthus hypochondriacus compared to other grain amaranths and A. hybridus, their shared ancestor. Plants 8:239

    Article  PubMed Central  CAS  Google Scholar 

  • Hatier JHB, Gould KS (2008) Foliar anthocyanins as modulators of stress signals. J Theor Biol 253:625–627

    Article  CAS  PubMed  Google Scholar 

  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820

    Article  CAS  PubMed  Google Scholar 

  • Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation-structural and chromatic aspects. J Food Sci 71:R41–R50

    Article  CAS  Google Scholar 

  • Hoffmann-Campo CB, Neto JAR, de Oliveira MCN, Oliveira LJ (2006) Detrimental effect of rutin on Anticarsia gemmatalis. Pesqui Agropecu Bras 41:1453–1459

    Article  Google Scholar 

  • Hondred D, Walker JM, Mathews DE, Vierstra RD (1999) Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol 119:713–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura T, Takagi H, Miyazato A, Ohki S, Mizukoshi H, Mori M (2018) Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochem Biophys Res Commun 496:280–286

    Article  CAS  PubMed  Google Scholar 

  • Izzo LG, Arena C, De Micco V, Capozzi F, Aronne G (2019) Light quality shapes morpho-functional traits and pigment content of green and red leaf cultivars of Atriplex hortensis. Sci Hortic 246:942–950

    Article  Google Scholar 

  • Jain G, Gould KS (2015) Are betalain pigments the functional homologues of anthocyanins in plants? Environ Exp Bot 119:48–53

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochemistry 117:267–295

    Article  CAS  PubMed  Google Scholar 

  • Kietlinski KD, Jimenez F, Jellen EN, Maughan PJ, Smith SM, Pratt DB (2014) Relationships between the weedy Amaranthus hybridus (Amaranthaceae) and the grain amaranths. Crop Sci 54:220

    Article  Google Scholar 

  • Kinsman LT, Pinfield NJ, Stobart AK (1975) The hormonal control of amaranthin synthesis in Amaranthus caudatus seedlings. Planta 127:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kortbeek RWJ, van der Gragt M, Bleeker PM (2019) Endogenous plant metabolites against insects. Eur J Plant Pathol 154:67–90

    Article  Google Scholar 

  • Li G, Meng X, Zhu M, Li Z (2019) Research progress of betalain in response to adverse stresses and evolutionary relationship compared with anthocyanin. Molecules 24:3078

    Article  CAS  PubMed Central  Google Scholar 

  • Liu S, Zheng X, Pan J, Peng L, Cheng C, Wang X, Zhao C, Zhang Z, Lin Y, Xu XH, Lai Z (2019) RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE 14:e0216001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Malone LA, Barraclough EI, Lin-Wang K, Stevenson DE, Allan AC (2009) Effects of red-leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, Spodoptera litura and Helicoverpa armigera. Entomol Exp Appl 133:117–127

    Article  Google Scholar 

  • Marchesini VA, Yin C, Colmer TD, Veneklaas EJ (2014) Drought tolerances of three stem-succulent halophyte species of an inland semiarid salt lake system. Funct Plant Biol 41:1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  CAS  PubMed  Google Scholar 

  • Moliterni VMC, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G (2015) Early transcriptional changes in Beta vulgaris in response to low temperature. Planta 242:187–201

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Araki T, Ueno O (2011) Photoprotective function of betacyanin in leaves of Amaranthus cruentus L. under water stress. Photosynthetica 49:497–506

    Article  CAS  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  PubMed  Google Scholar 

  • Palmeros-Suárez PA, Massange-Sánchez JA, Martínez-Gallardo NA, Montero-Vargas JM, Gómez-Leyva JF, Délano-Frier JP (2015) The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis. Plant Sci 240:25–40

    Article  PubMed  CAS  Google Scholar 

  • Pavokovic D, Krsnik-Rasol M (2011) Complex biochemistry and biotechnological production of betalains. Food Technol Biotechnol 49:145–155

    CAS  Google Scholar 

  • Piattelli M (1981) The betalains: structure, biosynthesis and chemical taxonomy. In: Conn E (ed) The biochemistry of plants: a comprehensive treatise. Academic Press, pp 557–575

    Google Scholar 

  • Piattelli M, Giudici de Nicola M, Castrogiovanni V (1969) Photocontrol of amaranthin synthesis in Amaranthus tricolor. Phytochemistry 8:731–736

    Article  CAS  Google Scholar 

  • Polturak G, Aharoni A (2018) “La Vie en Rose”: Biosynthesis, sources, and applications of betalain pigments. Mol Plant 11:7–22

    Article  CAS  PubMed  Google Scholar 

  • Polturak G, Breitel D, Grossman N, Sarrion-Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A (2016) Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol 210:269–283

    Article  CAS  PubMed  Google Scholar 

  • Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A (2017) Engineered gray mold resistance, antioxidant capacity and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci USA 114:9062–9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, Malitsky S, Rogachev I, Aharoni A (2018) Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol Plant 11:189–204

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Valencia P, Muñiz-Reyes E, Espitia-Rangel E (2012) Phytosanitary aspects of grain amaranth (Amaranthus spp.). In: Espitia Rangel E (ed) Amaranto: ciencia y tecnología. Libro Científico INIFAP/SINAREFI, pp 269–290

    Google Scholar 

  • Sasaki N, Wada K, Koda T, Kasahara K, Adachi T, Ozeki Y (2005) Isolation and characterization of cDNAs encoding an enzyme with glucosyltransferase activity for cyclo-DOPA from four o’clocks and feather cockscombs. Plant Cell Physiol 46:666–670

    Article  CAS  PubMed  Google Scholar 

  • Sdouga D, Amor FB, Ghribi S, Kabtni S, Tebini M, Branca F, Trifi-Farah N, Marghali S (2019) An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicol Environ Saf 172:45–52

    Article  CAS  PubMed  Google Scholar 

  • Sepulveda-Jimenez G, Rueda-Benitez P, Porta H, Rocha-Sosa M (2004) Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiol Mol Plant Pathol 64:125–133

    Article  CAS  Google Scholar 

  • Shamloul M, Trusa J, Mett V, Yusibov V (2004) Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 86:51204

    Google Scholar 

  • Sheehan H, Feng T, Walker-Hale N, Lopez-Nieves S, Pucker B, Guo R, Yim WC, Badgami R, Timoneda A, Zhao L, Tiley H, Copetti D, Sanderson MJ, Cushman JC, Moore MJ, Smith SA, Brockington SF (2020) Evolution of L-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. New Phytol 227:914–929

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Stafford HA (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98

    Article  CAS  Google Scholar 

  • Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:80–92

    Article  PubMed  Google Scholar 

  • Stetter MG, Müller T, Schmid KJ (2017) Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus). Mol Ecol 26:871–886

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  • Summers CB, Felton GW (1994) Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol 24:943–953

    Article  CAS  Google Scholar 

  • Sunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, Symonds VV, Lloyd A (2016) Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE 11:e0149417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Angiosperm Phylogeny Group II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez-Nieves S, Guo R, Brockington SF (2019) The evolution of betalain biosynthesis in caryophyllales. New Phytol 224:71–85

    Article  PubMed  Google Scholar 

  • Trezzini GF, Zrÿb JP (1991) Characterization of some natural and semi-synthetic betaxanthins. Phytochemistry 30:1901–1903

    Article  CAS  Google Scholar 

  • Vargas-Ortiz E, Espitia-Rangel E, Tiessen A, Délano-Frier JP (2013) Grain amaranths are defoliation-tolerant crop species capable of utilizing stem and root carbohydrate reserves to sustain vegetative and reproductive growth after leaf loss. PLoS ONE 8:e67879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshavsky A (2005) Ubiquitin fusion technique and related methods. Methods Enzymol 399:777–799

    Article  CAS  PubMed  Google Scholar 

  • Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–519

    Article  CAS  PubMed  Google Scholar 

  • Wang CQ, Liu T (2007) Involvement of betacyanin in chilling-induced photoinhibition in leaves of Suaeda salsa. Photosynthetica 45:182

    Article  CAS  Google Scholar 

  • Wu X, Blair MW (2017) Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS). Front Plant Sci 8:1960

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yang L, Li M, Ma B, Yan C, Chen J (2015) Omics-based comparative transcriptional profiling of two contrasting rice genotypes during early infestation by small brown planthopper. Int J Mol Sci 16:28746–28764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao SZ, Sun HZ, Chen M, Wang BS (2010) Light-regulated betacyanin accumulation in euhalophyte Suaeda salsa calli. Plant Cell Tissue Org 102:99–107

    Article  CAS  Google Scholar 

  • Zhao SZ, Sun HZ, Gao Y, Sui N, Wang BS (2011) Growth regulator-induced betacyanin accumulation and dopa-4,5- dioxygenase (DODA) gene expression in euhalophyte Suaeda salsa calli. In Vitro Cell Dev Biol Plant 47:391–398

    Article  CAS  Google Scholar 

  • Zheng X, Liu S, Cheng C, Guo R, Chen Y, Xie L, Mao Y, Lin Y, Zhang Z, Lai Z (2016) Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnol Lett 38:723–729

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Karl T, Lewis DH, McGhie TK, Arathoon S, Davies KM, Ryan KG, Gould KS, Schwinn KE (2021) Production of betacyanins in transgenic Nicotiana tabacum increases tolerance to salinity. Front Plant Sci 12:653147

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Jorge Ibarra Rendón and Javier Lúevano Borroel from Cinvestav, unidad Irapuato for their generous gift of the M. sexta larvae utilized for the insect herbivory experiments.

Funding

CPN was supported by a postgraduate scholarship granted by The National Council for Science and Technology (CONACYT, México), Code No. 268236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Délano-Frier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portillo-Nava, C., Guerrero-Esperanza, M., Guerrero-Rangel, A. et al. Natural or light-induced pigment accumulation in grain amaranths coincides with enhanced resistance against insect herbivory. Planta 254, 101 (2021). https://doi.org/10.1007/s00425-021-03757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03757-3

Keywords

Navigation