Skip to main content
Log in

CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In this review, we have focused on the CRISPR/Cas9 technology for improving the agronomic traits in plants through point mutations, knockout, and single base editing, and we highlighted the recent progress in plant metabolic engineering.

Abstract

CRISPR/Cas9 technology has immense power to reproduce plants with desired characters and revolutionizing the field of genome engineering by erasing the barriers in targeted genome editing. Agriculture fields are using this advance genome editing tool to get the desired traits in the crops plants such as increase yield, improve product quality attributes, and enhance resistance against biotic and abiotic stresses by identifying and editing genes of interest. This review focuses on CRISPR/Cas-based gene knockout for trait improvement and single base editing to boost yield, quality, stress tolerance, and disease resistance traits in crops. Use of CRISPR/Cas9 system to facilitate crop domestication and hybrid breeding are also touched. We summarize recent developments and up-gradation of delivery mechanism (nanotechnology and virus particle-based delivery system) and progress in multiplex gene editing. We also shed lights in advances and challenges of engineering the important metabolic pathways that contain a variety of dietary metabolites and phytochemicals. In addition, we endorsed substantial technical hurdles and possible ways to overcome the unpredictability of CRISPR/Cas technology for broader application across various crop species. We speculated that by making a strong interconnection among all genomic fields will give a gigantic bunt of knowledge to develop crop expressing desired traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

taken from KEGG genome for plants (www.genome.jp/kegg/pathway). PAL phenylalanine ammonia lyase, C4H cinnamate 4-hydroxylase, 4CL 4coumarate CoA ligase, CHS chalcone synthase, FNS flavone synthase, FLS Flavonol synthase, IFS Isoflavone synthase, DFR Dihydroflavonol 4-reductase, ANS Anthocyanidin synthase, LAR leucoanthocyanidin reductase, LCR Leucoanthocyanidin reductase

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Armengaud P, Sulpice R, Miller AJ et al (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Mohanpuria P, Sidhu GS (2018) Citrus limonoids: mechanism, function and its metabolic engineering for human health. Fruits 73(3):158–173

    Article  CAS  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani S, Kondhare KR, Giri AP (2021) Advanced genome editing strategies for manipulation of plant specialized metabolites pertaining to biofortification. Phytochem Rev 1:282

    Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Braatz J, Harloff H-J, Mascher M et al (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Čermák T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang T, Guan M, Zhou B et al (2021) Progress of CRISPR/Cas9 technology in breeding of Brassica napus. Oil Crop Sci 6:53–57

    Article  Google Scholar 

  • Chen K, Shan Q, Gao C (2014) An efficient TALEN mutagenesis system in rice. Methods 69:2–8

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li W, Katin-Grazzini L et al (2018) A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic Res 5:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Civáň P, Brown TA (2017) Origin of rice (Oryza sativa L.) domestication genes. Genet Resour Crop Evol 64:1125–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS et al (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882–897

    Article  CAS  PubMed  Google Scholar 

  • Demirer GS, Zhang H, Matos JL et al (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14:456

    Article  CAS  PubMed  Google Scholar 

  • Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Li L, Liu C et al (2018) Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant 11:1214

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E, Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:6213

    Article  CAS  Google Scholar 

  • Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 1:41–47

    Article  CAS  Google Scholar 

  • Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen J, Dai X et al (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171:1794–1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehrke JM, Cervantes O, Clement MK et al (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36:977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • George VC, Dellaire G, Rupasinghe HPV (2017) Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 45:1–14

    Article  CAS  PubMed  Google Scholar 

  • Harrison MM, Jenkins BV, Connor-giles KMO, Wildonger J (2014) A CRISPR view of development. Genes Dev 28:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess GT, Tycko J, Yao D, Bassik MC (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68:26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Li J, Zhou J et al (2018) Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. Proc Natl Acad Sci 115:7559–7567

    Article  CAS  Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  CAS  PubMed  Google Scholar 

  • Jabbar A, Zulfiqar F, Mahnoor M et al (2021) Advances and perspectives in the application of CRISPR-Cas9 in Livestock. Mol Biotechnol. https://doi.org/10.1007/s12033-021-00347-2

    Article  PubMed  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakočiūnas T, Bonde I, Herrgård M et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  PubMed  CAS  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG et al (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, An X, Li Z et al (2021) CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol J. https://doi.org/10.1111/pbi.13590

    Article  PubMed  PubMed Central  Google Scholar 

  • Jusiak B, Cleto S, Perez-Pinera P, Lu TK (2016) Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol 34:535–547

    Article  CAS  PubMed  Google Scholar 

  • Khanday I, Skinner D, Yang B et al (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lim K, Kim S-T et al (2017) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2009) Use of secondary metabolite variation in crop improvement. Plant-derived natural products. Springer, Berlin, pp 83–95

    Chapter  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci 104:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2016) A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli. PLoS Pathog 12:e1005502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee ZH, Yamaguchi N, Ito T (2018) Using CRISPR/Cas9 system to introduce targeted mutation in arabidopsis. Plant transcription factors. Springer, Berlin, pp 93–108

    Chapter  Google Scholar 

  • Li M, Li X, Zhou Z et al (2016a) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhang D, Chen M et al (2016b) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics 43(6):415–419

    Article  PubMed  Google Scholar 

  • Li S, Gao F, Xie K et al (2016c) The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 14:2134–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang H, Si X et al (2017a) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics 44(9):465–468

    Article  PubMed  Google Scholar 

  • Li X, Zhou W, Ren Y et al (2017b) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44(3):175–178

    Article  PubMed  Google Scholar 

  • Li Z, Zhang D, Xiong X et al (2017c) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zong Y, Wang Y et al (2018a) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Fu D, Zhu B et al (2018b) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94:513–524

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li R, Li X et al (2018c) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16:415–427

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Y, Chen S et al (2018d) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xiong X, Li J-F (2018e) New cytosine base editor for plant genome editing. Sci China Life Sci 61:1602–1603

    Article  PubMed  Google Scholar 

  • Li J, Manghwar H, Sun L et al (2019) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J 17:858–868

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Y, Ma L (2021) Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. aBIOTECH. https://doi.org/10.1007/s42994-021-00042-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Hsu C, Yang L et al (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen J, Zheng X et al (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang S, Wang H et al (2021a) Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Mol Breed 41:471

    Article  Google Scholar 

  • Liu L, Gallagher J, Arevalo ED et al (2021b) Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat Plants 7:287–294

    Article  CAS  PubMed  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe K, Wu E, Wang N et al (2016) Morphogenic regulators baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe K, La Rota M, Hoerster G et al (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. Vitr Cell Dev Biol 54:240–252

    Article  CAS  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Luo T, Fu H et al (2018a) Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat Plants 4:338

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Wu B, Wang J et al (2018b) Blocking amino acid transporter Os AAP 3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J 16:1710–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang J, Yin W et al (2016) Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13:1029

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Gomez PA, Gong F, Nair N et al (2015) Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathesius U (2018) Flavonoid functions in plants and their interactions with other organisms. Plants (basel) 7(2):30

    Article  CAS  Google Scholar 

  • Miao C, Xiao L, Hua K et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci 115:6058–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Morineau C, Bellec Y, Tellier F et al (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu F, Mf B, Mus K et al (2021) Role of crispr to improve abiotic stress tolerance in crop plants. Bio Clin Sci Res J 1:1–9

    Google Scholar 

  • Nabavi SM, Šamec D, Tomczyk M et al (2018) Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv 38:107316

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ et al (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieves-Cordones M, Mohamed S, Tanoi K et al (2017) Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J 92:43–56

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729

    Article  PubMed  CAS  Google Scholar 

  • Nonaka S, Arai C, Takayama M et al (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C et al (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Østerberg JT, Xiang W, Olsen LI et al (2017) Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci 22:373–384

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016a) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016b) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Nat Publ Gr 6:1–10

    CAS  Google Scholar 

  • Perez-Vizcaino F, Fraga CG (2018) Research trends in flavonoids and health. Arch Biochem Biophys 646:107–112

    Article  CAS  PubMed  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. Vitr Cell Dev Biol 51:1–8

    Article  CAS  Google Scholar 

  • Rao MJ, Ding F, Wang N et al (2019a) Metabolic mechanisms of host species against citrus Huanglongbing (greening disease). Crit Rev Plant Sci 37:496–511

    Article  Google Scholar 

  • Rao MJ, Xu Y, Huang Y et al (2019b) Ectopic expression of citrus UDP-GLUCOSYL TRANSFERASE gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis. BMC Plant Bio 19(603):1–13

    CAS  Google Scholar 

  • Rao MJ, Xu Y, Tang X et al (2020) CsCYT75B1, a citrus CYTOCHROME P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants 9(2):161

    Article  CAS  PubMed Central  Google Scholar 

  • Rao MJ, Ahmed U, Ahmed MH et al (2021a) Comparison and quantification of metabolites and their antioxidant activities in young and mature leaves of sugarcane. ACS Food Sci Technol 1:362–373

    Article  CAS  Google Scholar 

  • Rao MJ, Zuo H, Xu Q (2021b) Genomic insights into citrus domestication and its important agronomic traits. Plant Commun 2:100138

    Article  PubMed  Google Scholar 

  • Rees HA, Komor AC, Yeh W-H et al (2017) Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8:15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salsman J, Dellaire G (2016) Precision genome editing in the CRISPR era. Biochem Cell Biol 95:187–201

    Article  PubMed  CAS  Google Scholar 

  • Sangwan NS, Jadaun JS, Tripathi S et al (2018) Plant metabolic engineering. Omics technologies and bio-engineering. Elsevier, Amstertam, pp 143–175

    Chapter  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A et al (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci 98:367–372

    Article  CAS  PubMed  Google Scholar 

  • Scarano A, Chieppa M, Santino A (2018) Looking at flavonoid biodiversity in horticultural crops: a colored mine with nutritional benefits. Plants 7:98

    Article  CAS  PubMed Central  Google Scholar 

  • Schaaf J, Walter MH, Hess D (1995) Primary metabolism in plant defense’. Plant Physiol 108(3):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395

    Article  CAS  PubMed  Google Scholar 

  • Shen R, Wang L, Liu X et al (2017) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8:1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar M, Albertsen MC et al (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383

    Article  CAS  PubMed  Google Scholar 

  • Sohn SI, Pandian S, Oh YJ et al (2021) Metabolic engineering of isoflavones: an updated overview. Front Plant Sci 12:1–17

    Article  Google Scholar 

  • Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang X, Liu G, Zhou J et al (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi S, Sangwan RS, Mishra B et al (2019) Berry transcriptome: insights into a novel resource to understand development dependent secondary metabolism in Withania Somnifera (Ashwagandha). Physiol Plant 168(1):148–173

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Kumar R, Das A et al (2020) CRISPR-Cas9 system: a genome-editing tool with endless possibilities. J Biotechnol 319:36–53

    Article  CAS  PubMed  Google Scholar 

  • Usman B, Nawaz G, Zhao N et al (2021) Programmed editing of rice (Oryza sativa l.) osspl16 gene using crispr/cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. Int J Mol Sci 22:1–19

    CAS  Google Scholar 

  • Van Der Straeten D, Bhullar NK, De Steur H et al (2020) Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun 11:520

    CAS  Google Scholar 

  • van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat Plants 2:16164

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Studer AJ, Zhao Q et al (2015a) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200:965–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X (2015b) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang F-Z, Chen M-X, Yu L-J et al (2017a) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Mao Y, Lu Y et al (2017b) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Zhang S et al (2017c) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li J, Wang Y et al (2018) Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 36:946

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Q, Shen Y et al (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37:283

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Liu W, Wang X (2015) WU-CRISPR : characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16(1):1–8

    Article  CAS  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Niu B, Long Y et al (2017a) Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J Integr Plant Biol 59:669–679

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Xu P, Huang J et al (2017b) Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 locus encoding a peptidase-like protein. Mol Plant 10:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Yang Y, Qin R et al (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529–532

    Article  PubMed  Google Scholar 

  • Yao L, Zhang Y, Liu C et al (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4:530

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Peng Z, Tang D et al (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhao Z, Zheng X et al (2018) A selfish genetic element confers non-Mendelian inheritance in rice. Science 360:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016a) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Mao Y, Ha S et al (2016b) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35:1519–1533

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang H, Botella JR, Zhu J (2018a) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60:369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li D, Zhang D et al (2018b) Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J 94:857–866

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang L, Li X et al (2021) Distinctively altered lignin biosynthesis by site-modification of OsCAD2 for enhanced biomass saccharification in rice. GCB Bioenergy 13:305–319

    Article  CAS  Google Scholar 

  • Zhou J, Peng Z, Long J et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, He M, Li J et al (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Farré G, Zanga D et al (2018) High-carotenoid maize: development of plant biotechnology prototypes for human and animal health and nutrition. Phytochem Rev 17:195–209

    Article  CAS  Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Song Q, Li C et al (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36:950–953

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to the Postdoctoral Project from GXU and National Natural Science Foundation of China for providing grants to accomplish this article.

Funding

Supported by the Postdoctoral Project from GXU. This work was supported by the National Natural Science Foundation of China grant no: 31771775 and 31171524 and China Postdoctoral Science Foundation grant number: 2021M693797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqiang Wang.

Ethics declarations

Conflict of interest

“The authors declare no conflict of interest.”

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.J., Wang, L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta 254, 68 (2021). https://doi.org/10.1007/s00425-021-03716-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03716-y

Keywords

Navigation