Skip to main content
Log in

Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Three types of the glandular trichomes are developed on the flowers and leaves of Millingtonia hortensis. Morphology, cell ultrastructure and content of the volatile compounds are specific to each trichome type.

Abstract

The aim of this study was to characterize the structural and histochemical features of the glandular trichomes (GTs) of two types localized on the different flower parts and leaves in Millingtonia hortensis, as well as to identify the composition of the internal pool of metabolites. The peltate GTs are most common; they are founded on peduncle, calyx, ovary, and leaves. GTs consist of 12–24-cell disk-shaped head and a single-celled neck. The capitate GTs are located on corolla tube and have four to eight-cell head, single-celled neck and a wide multicellular stalk. A series of histochemical reactions and fluorescent microscopy revealed the various substances in the chemical composition of GTs. Acid polysaccharides are predominately identified in the capitate trichomes of the corolla tube and peltate trichomes of calyx, terpenes present in larger quantity in the trichomes of the corolla tube and ovary, whilst phenolic substances prevail in the trichomes of the calyx and ovary. GTs of each type are characterized by specific ultrastructural traits. Smooth endoplasmic reticulum (SER) and leucoplasts prevail in the peltate trichomes of peduncle, calyx and ovary; Golgi apparatus is the common organelle in the capitate trichomes of the corolla tube and peltate trichomes of calyx; the huge aggregates of the RER cisterns there are in cytoplasm of all leaf trichomes. Synthesized secretion accumulates in the subcuticular cavity of all GTs except the leaf peltate trichomes. In the trichomes of the leaves secretion is stored in the thick upper cell wall with the wide cutinized layer. For the first time content of the internal pool of metabolites from the flowers and leaves was identified by GC–MS. Seventeen compounds, including alcohols, fatty acid derivatives, monoterpenes, sesquiterpenes, and benzenoids were identified. 1-octen 3-ol, 3-carene, methyl salicylate, p-hydroxybenzeneethanol and 1-hydroxy-2,4-di-tertbutyl-benzene were the main compounds of the flower scent. We consider GTs of the reproductive organs in M. hortensis synthesizing acid polysaccharides and volatile compounds as secretory structures attracting of pollinators, whereas the leaf peltate trichomes accumulating predominately non-volatile phenols, protect young vegetative shoots against small herbivorous insects and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GT:

Glandular trichome

SER:

Smooth endoplasmic reticulum

RER:

Rough endoplasmic reticulum

References

  • Anulakanapakorn K, Bunyapraphatsara N, Satayavivad J (1989) Phytochemical and pharmacological studies of the flowers of Millingtonia hortensis Linn. J Sci Soc Thailand 13:71–83

    Google Scholar 

  • Appezzato-da-Glória B, Da Costa FB, da Silva VC, Gobbo-Neto L, Rehder VLG, Hayashi AH (2012) Glandular trichomes on aerial and underground organs in Chrysolaena species (Vernonieae–Asteraceae): structure, ultrastructure and chemical composition. FLORA 207:878–887. https://doi.org/10.1016/j.flora.2012.10.003

    Article  Google Scholar 

  • Ascensão L, Pais MS (1998) The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann Bot 81:263–271

    Google Scholar 

  • Ascensão L, Marques N, Pais MS (1997) Peltate glandular trichomes of Leonotis leonurus leaves: ultrastructure and histochemical characterization of secretions. Int J Plant Sci 158:249–258

    Google Scholar 

  • Ascensão L, Mota L, Castro DM (1999) Glandular trichomes on the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann Bot 84:437–447

    Google Scholar 

  • Aschenbrenner A-K, Amrehn E, Bechtel L, Spring O (2015) Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile. Planta 241:837–846

    CAS  PubMed  Google Scholar 

  • Barman M, Mitra A (2019) Temporal relationship between emitted and endogenous floral scent volatiles in summer- and winter-blooming Jasminum species. Physiol Plant 166:946–959

    CAS  PubMed  Google Scholar 

  • Beevers L (1996) Clathrin-coated vesicles in plants. Int Rev Cytol 167:1–37

    CAS  Google Scholar 

  • Bera P, Mukherjee C, Mitra A (2017) Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci 256:25–38. https://doi.org/10.1016/j.plantsci.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  • Berggren B (1987) Structure and cytochemistry of the procambium in Salix buds during dormancy and dormancy breaking. Nord J Bot 7:153–167. https://doi.org/10.1111/j.1756-1051.1987.tb00928.x

    Article  CAS  Google Scholar 

  • Bhattacharya R, Saha S, Kostina O, Muravnik L, Mitra A (2020) Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph. Appl Microsc 50:15. https://doi.org/10.1186/s42649-020-00035-6

    Article  Google Scholar 

  • Bisio A, Corallo A, Gastaldo P, Romussi G, Ciarallo G, Fontana N, De Tommasi N, Profumo P (1999) Glandular hairs and secreted material in Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452

    CAS  Google Scholar 

  • Bittencourt NS Jr, Semir J (2004) Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Syst Evol 247:241–254. https://doi.org/10.1007/s00606-004-0142-2

    Article  Google Scholar 

  • Bunyapraphatsara N, Blaskó G, Cordell GA (1989) Hortensin, an unusual flavone from Millingtonia hortensis. Phytochemistry 28:1555–1556. https://doi.org/10.1016/S0031-9422(00)97793-8zxc

    Article  CAS  Google Scholar 

  • Cheniclet C, Carde J-P (1985) Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Israel J Bot 34:219–238

    Google Scholar 

  • Corsi G, Bottega S (1999) Glandular hairs of Salvia officinalis: new data on morphology, localization and histochemistry in relation to function. Ann Bot 84:657–664

    Google Scholar 

  • David R, Carde J-P (1964) Coloration differentiele des inclusions lipidique et terpeniques des pseudophilles du pin maritime au moyen du reactif nadi. C R Acad Sci (Paris) 258:1338–1340

    CAS  Google Scholar 

  • de Fróes Castro FFP, Gama TSS, Feio AC, Demarco D, Aguiar-Dias ACA (2015) Structure and distribution of glandular trichomes in three species of Bignoniaceae. Acta Amazonica 45:347–354

    Google Scholar 

  • Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry. Academic Press, London

    Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    CAS  PubMed  Google Scholar 

  • Giuliani C, Maleci Bini L (2008) Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant Syst Evol 276:199–208

    Google Scholar 

  • Glauert AM (1980) Fixation, dehydration and embedding of biological specimens. Practical methods in electron microscopy, Elsevier, Amsterdam

    Google Scholar 

  • Gonzalez AM (2013) Indumento, nectarios extraflorales y anatomía foliar en Bignoniáceas de la Argentina. Bol Soc Argent Bot 48:221–245

    Google Scholar 

  • Guimaraes E, Di Stasi LC, De Cassia S, Nia Maimoni-Rodella R (2008) Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function. Ann Bot 102:699–711

    PubMed  PubMed Central  Google Scholar 

  • Gutmann M (1995) Improved staining procedures for photographic documentation of phenolic deposits in semithin sections of plant tissue. J Microsc 179:277–281

    CAS  Google Scholar 

  • Harborne JH, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    CAS  PubMed  Google Scholar 

  • Hase T, Ohtani K, Kasai R, Yamasaki K, Picheansoonthon C (1995) Revised structure for hortensin, a flavonoid from Millingtonia hortensis. Phytochemistry 40:287–290. https://doi.org/10.1016/0031-9422(95)00206-M

    Article  CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  • Karabourniotis G, Kotsabassidis D, Manetas Y (1995) Trichome density and its protective potential against ultraviolet-B radiation damage during leaf development. Can J Bot 73:376–383

    Google Scholar 

  • Kaushik R, Saini P (2008) Larvicidal activity of leaf extract of Millingtonia hortensis (family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. J Vector Borne Dis 45:66–69

    CAS  PubMed  Google Scholar 

  • Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol 79:1026–1032. https://doi.org/10.1104/pp.79.4.1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E-S, Mahlberg PG (1991) Secretory cavity development in glandular trichomes of Cannabis sativa L. (Cannabaceae). Am J Bot 78:220–229

    Google Scholar 

  • Kotamreddy JNR, Hansda C, Mitra A (2020) Semi-targeted metabolomic analysis provides the basis for enhanced antioxidant capacities in pigmented rice grains. Food Meas 14:1183–1191. https://doi.org/10.1007/s11694-019-00367-2

    Article  Google Scholar 

  • Koteyeva NK (1997) Ultrastructural changes in shoot apical meristem cells of Pinus sylvestris (Pinaceae) in annual cycle. Botanichiskii Zhurnal 82:10–23

    Google Scholar 

  • Lopes AV, Vogel S, Machado IC (2002) Secretory trichomes, a substitutive floral nectar source in Lundia A. DC. (Bignoniaceae), a genus lacking a functional disc. Ann Bot 90:169–174. https://doi.org/10.1093/aob/mcf169

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado SR, Gregorio EA, Guimaraes E (2006) Ovary peltate trichomes of Zeyheria montana (Bignoniaceae): developmental ultrastructure and secretion in relation to function. Ann Bot 97:357–369

    PubMed  PubMed Central  Google Scholar 

  • Mehra KR, Kulkarni AR (1989) Floral trichomes in some members of Bignoniaceae. Proc Indian Acad Sci 99:97–105

    Google Scholar 

  • Meyberg M, Krohn S, Brummer B, Kristen U (1991) Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185:357–363

    Google Scholar 

  • Muravnik LE, Shavarda AL (2011) Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultrastructure, and chemical composition. Int J Plant Sci 172:159–172

    CAS  Google Scholar 

  • Muravnik LE, Shavarda AL (2012) Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nord J Bot 30:470–481

    Google Scholar 

  • Muravnik LE, Vassilyev AE, Potapova YY (1995) Ultrastructural aspects of digestive gland functioning in Aldrovanda vesiculosa. Russ J Plant Physiol 42:1–8

    CAS  Google Scholar 

  • Muravnik LE, Kostina OV, Mosina AA (2019) Glandular trichomes of the leaves in three Doronicum species (Senecioneae, Asteraceae): morphology, histochemistry and ultrastructure. Protoplasma 256(3):789–803. https://doi.org/10.1007/s00709-018-01342-2

    Article  CAS  PubMed  Google Scholar 

  • Nair AGR, Sivakumar R (1992) Non-identity of hortensin from Millingtonia hortensis with 3,4′-dihydroxy-6,7-dimethoxyflavone. Phytochemistry 31:671–673. https://doi.org/10.1016/0031-9422(92)90057-W

    Article  CAS  Google Scholar 

  • Nogueira A, El Ottra JHL, Guimarães E, Machado SR, Lohmann LG (2013) Trichome structure and evolution in Neotropical lianas. Ann Bot 112:1331–1350. https://doi.org/10.1093/aob/mct201

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera GL (1996) Floral trichomes in four Tecomeae (Bignoniaceae). Darwiniana 34:19–26

    Google Scholar 

  • Schnepf E (1971) Die Feinstruktur der lamellären Einschlußkörper im Zellkern und im Cytoplasma der Drüsenhaare von Salvia glutinosa. Protoplasma 73:67–72. https://doi.org/10.1007/BF01286412

    Article  Google Scholar 

  • Schopker H, Kneisel M, Beerhues L, Robenek H, Wiermann R (1995) Phenylalanine ammonia-lyase and chalkone synthase in glands of Primula kewensis (W. Wats): immunofluorescence and immunogold localization. Planta 196:712–719

    Google Scholar 

  • Seibert RJ (1948) The use of glands in a taxonomic consideration of the family Bignoniaceae. Ann Missouri Bot Gard 35:123–137. https://doi.org/10.2307/2394389

    Article  Google Scholar 

  • Sharma RC, Zaman A, Kidwai AR (1968) Chemical examination of Millingtonia hortensis. Phytochemistry 7:1891–1892. https://doi.org/10.1016/S0031-9422(00)86669-8

    Article  CAS  Google Scholar 

  • Souza L, Santos G, Moschetta IS (2010) Morfoanatomia floral de espe´cies lianescentes de Bignoniaceae. Iheringia 65:5–15

    Google Scholar 

  • Spring O (2000) Chemotaxonomy based on metabolites from glandular trichomes. Adv Bot Res 31:153–174. https://doi.org/10.1016/s0065-2296(00)31009-6

    Article  CAS  Google Scholar 

  • Subramanian SS, Nagarajan S, Sulochana N (1971) Flavonoids of Millingtonia hortensis. Curr Sci 40:194–195

    CAS  Google Scholar 

  • Tozin LRS, Carvalho SF, Machado SR, Rodrigues TM (2015) Glandular trichome diversity on leaves of Lippia origanoides and Lippia stachyoides (Verbenaceae): morphology, histochemistry, and ultrastructure. Botany 93:297–306. https://doi.org/10.1139/cjb-2014-0251

    Article  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Nielsen EE, Froehlich JE, Croteau R (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ugbabe GE, Ayodele AE, Kalpana SJ, Okogun JI (2014) Ultra-structure of the leaf surfaces of the family Bignoniaceae Juss. in Nigeria. Global J Bot Sci 2:37–44

    Google Scholar 

  • Valkama E, Salminen J-P, Koricheva J, Pihlaja K (2003) Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in finnish birch species. Ann Bot 91:643–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilyev AE (2000) Quantitative ultrastructural data of secretory duct epithelial cells in Rhus toxicodendron. Int J Plant Sci 161:615–630

    CAS  Google Scholar 

  • Vassilyev AE, Gamaley YV (1975) Protein crystals in plant cells. Tsitologia 17:371–389

    Google Scholar 

  • Vassilyev AE, Muravnik LE (1988) The ultrastructure of the digestive glands in Pinguicula vulgaris L. (Lentibulariaceae) relative to their function. I The changes during maturation. Ann Bot 62:329–341. https://doi.org/10.1093/oxfordjournals.aob.a087665

    Article  Google Scholar 

  • Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora 192:305–333

    Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    CAS  Google Scholar 

  • Wong DCJ, Pichersky E, Peakall R (2017) The biosynthesis of unusual floral volatiles and blends involved in orchid pollination by deception: current progress and future prospects. Front Plant Sci 8:1955. https://doi.org/10.3389/fpls.2017.01955

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Core Centre “Cell and Molecular Technology in the Plant Science” at the Komarov Botanical Institute (St. Petersburg, Russia) for providing of equipment for light and electron microscopy. The present study was supported by an Indo-Russian Research Grant funded jointly by the Russian Foundation for Basic Research, Moscow (RFBR grant no. 18-54-45010 to L. E. Muravnik) and the Government of India, Department of Science and Technology, New Delhi (DST grant no. INT/RUS/RFBR/P-329 to A. Mitra). We also thank the two anonymous reviewers for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila E. Muravnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Soheil S Mahmoud.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravnik, L.E., Mosina, A.A., Zaporozhets, N.L. et al. Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae). Planta 253, 13 (2021). https://doi.org/10.1007/s00425-020-03541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03541-9

Keywords

Navigation