Skip to main content
Log in

The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively modulate lateral root development by repressing vacuolar invertase VIN2 activity.

Abstract

Lateral root (LR) architecture greatly affects the efficiency of nutrient absorption and the anchorage of plants. Although the internal phytohormone regulatory mechanisms that control LR development are well known, how external nutrients influence lateral root development remains elusive. Here, we characterized the function of two FK506-binding proteins, namely, FKBP15-1 and FKBP15-2, in Arabidopsis. FKBP15-1/15–2 genes were expressed prominently in the vascular bundles of the root basal meristem region, and the FKBP15-1/15–2 proteins were localized to the endoplasmic reticulum of the cells. Using IP-MS, Co-IP, and BiFC assays, we demonstrated that FKBP15-1 and FKBP15-2 interacted with vacuolar invertase 2 (VIN2). Compared to Col-0 and the single mutants, the fkbp15-1fkbp15-2 double mutant had more LRs, and presented higher sucrose catalytic activity. Moreover, genetic analysis showed genetic epistasis of VIN2 over FKBP15-1/FKBP15-2 in controlling LR development. Our results indicate that FKBP15-1 and FKBP15-2 participate in the control of LR number by inhibiting the catalytic activity of VIN2. Owing to the conserved peptidylprolyl cis–trans isomerase activity of FKBP family proteins, our results provide a clue for further analysis of the interplay between lateral root development and protein modification by FKBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

Abbreviations

LR:

Lateral root

FKBP:

FK506-binding proteins

IP-MS:

Immunoprecipitation and mass spectrometry

VIN2:

Vacuolar invertase 2

XPP:

Xylem pole-pericycle

ER:

Endoplasmic reticulum

UBQ:

Ubiquitin

GUS:

ß-glucuronidase

YFP:

Yellow fluorescent protein

GFP:

Green fluorescent protein

MS:

Murashige and Skoog

TOR:

Target of rapamycin

TWD1:

TWISTED DWARF1

References

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bai H, Murali B, Barber K et al (2013) Low phosphate alters lateral root setpoint angle and gravitropism. Am J Bot 100:175–182

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Faulkner C, Pendle A et al (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26:136–147

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Bielach A (2010) Lateral root organogenesis — from cell to organ. Curr Opin Plant Biol 13:677–683

    Article  PubMed  Google Scholar 

  • Bouchard R, Bailly A, Blakeslee JJ et al (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee JY et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Brauer EK, Ahsan N, Dale R et al (2016) The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiol 171:1470–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casimiro I, Beeckman T, Graham N et al (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Chapman K, Taleski M, Ogilvie HA, Imin N, Djordjevic MA (2019) CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. J Exp Bot 70:3955–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BB, Wang J, Zhang J et al (2016) Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci Rep 6:28541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Ryu H, Rho S et al (2014) A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol 16:66–76

    Article  CAS  PubMed  Google Scholar 

  • De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193:867–873

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Scheres B (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69:155–167

    Article  CAS  PubMed  Google Scholar 

  • Duque LO, Villordon A (2019) Root branching and nutrient efficiency: status and way forward in root and tuber crops. Front Plant Sci 10:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand M, Mainson D, Porcheron B et al (2018) Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247:587–611

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    Article  CAS  PubMed  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem 3:1315–1347

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Girin M, Brandt S et al (2004) Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15:3393–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh M, Mishra BS et al (2009) Role of glucose in spatial distribution of auxin regulated genes. Plant Signal Behav 4:862–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh M, Laxmi A (2015) Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiol 168:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harikishore A, Yoon HS (2015) Immunophilins: structures, mechanisms and ligands. Curr Mol Pharmacol 9:37–47

    Article  PubMed  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Hooper CM, Castleden IR, Tanz SK et al (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, Zhu J, Wang B et al (2015) The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development 142:712–721

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Cho C, Lee MR et al (2016) CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. Plant Cell 28:1828–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing HW, Strader LC (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Med Sci 20:486

    Article  CAS  Google Scholar 

  • Jing H, Strader CL (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Sci 20:486

    Article  CAS  PubMed Central  Google Scholar 

  • Lavenus J, Lucas M, Laplaze L et al (2013) The dicot root as a model system for studying organogenesis. Methods Mol Biol 959:45–67

    Article  CAS  PubMed  Google Scholar 

  • Leskow CC, Kamenetzky L, Dominguez PG et al (2016) Allelic differences in a vaculoar invertase affect Arabidopsis growth at early plant development. J Exp Bot 67(14):4091–4103

    Article  CAS  PubMed  Google Scholar 

  • Lima A, Lima S, Wong JH et al (2006) A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci U S A 103:12631–12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Han X, Zhan G et al (2015) A novel sucrose-regulatory MADS-Box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.). Int J Mol Sci 16:20657–20673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Bio 25:130–137

    Article  CAS  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleery WT, Mohd-Radzman NA, Grieneisen VA (2017) Root branching plasticity: collective decision-making results from local and global signalling. Curr Opin Cell Biol 44:51–58

    Article  CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P et al (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4:e4502

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogami J, Fujita Y, Yoshida T et al (2014) Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Plant Physiol 55:781–789

    Google Scholar 

  • Morenorisueno MA, Norman JMV, Moreno A et al (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311

    Article  CAS  Google Scholar 

  • Morey SR, Hirose T, Hashida Y et al (2018) Genetic evidence for the role of a rice vacuolar invertase as a molecular sink strength determinant. Rice 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M et al (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Riverol Y, Csordas A, Bai J et al (2018) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450

    Article  PubMed Central  CAS  Google Scholar 

  • Pogorelko GV, Mokryakova M, Fursova OV et al (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538:12–22

    Article  CAS  PubMed  Google Scholar 

  • Romano P, He Z, Luan S (2004) Introducing immunophilins. From organ transplantation to plant biology. Plant Physiol 134:1241–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Santos Teixeira JA, Tusscher KH (2019) The systems biology of lateral root formation: connecting the dots. Mol Plant 12:784–803

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Smyczynski C, Roudier F, Gissot L et al (2006) The C terminus of the immunophilin pasticcino1 is required for plant development and for interaction with a nac-like transcription factor. J Biol Chem 281:25475–25484

    Article  CAS  PubMed  Google Scholar 

  • Somssich M, Khan GA, Persson S (2016) Cell wall heterogeneity in root development of Arabidopsis. Front Plant Sci 7:1242

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun CH, Yu JQ, Hu DG (2017) Nitrate: A crucial signal during lateral roots development. Front Plant Sci 8:485

    PubMed  PubMed Central  Google Scholar 

  • Tian H, De Smet I, Ding Z (2014) Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19:426–431

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan D, Gopalan G, Kumar A et al (2015) Plant immunophilins: a review of their structure-function relationship. Biochim Biophys Acta 1850:2145–2158

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li XR, Lian H et al (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Bailly A, Zwiewka M et al (2013) Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25:202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H et al (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie C, Mao X, Huang J et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  CAS  Google Scholar 

  • Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287:2836–2842

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Liu G, Meng X et al (2012) A versatile agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 50:761–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the China Transgenic Program (2019ZX08010-004). The funders were not involved in the design of the study, the data collection and analysis, or the writing of the manuscript. We thank Dr. Sheng Luan (University of California Berkeley) for kindly providing the overexpression vector. We are also grateful to the Instrument Analysis Centre of Shanghai Jiao Tong University for LC-MS/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijing Zuo.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The datasets are in a publicly accessible repository

The datasets analysed for this study can be found under dataset identifiers PXD017200 and 10.6019/PXD017200 in the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org/cgi/GetDataset. Perez-Riverol et al. 2018).

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, W., Kong, X. et al. The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. Planta 252, 52 (2020). https://doi.org/10.1007/s00425-020-03459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03459-2

Keywords

Navigation