Skip to main content
Log in

Raman spectroscopy as an early detection tool for rose rosette infection

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Hand-held Raman spectroscopy is a potential tool for a confirmatory, non-invasive, and non-destructive detection and identification of rose rosette disease. Using this spectroscopic approach, structural changes in roses that are associated with this viral infection can be revealed.

Abstract

The commercial rose shrub industry in the United States is one of the largest of its kind. All commercial rose varieties are susceptible to rose rosette disease (RRD), a deadly viral disease vectored by eriophyid mites. This disease is typically diagnosed visually and/or by PCR-based detection assays. The present work demonstrates that Raman spectroscopy can detect RRD in intact leaf tissue. It is shown that chemometric analysis can distinguish between spectra collected from symptomatic and asymptomatic tissue, as well as between healthy and asymptomatic tissue. This method will be useful as an initial screen for RRD prior to PCR analysis to help conserve reagents and save time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adar F (2017) Carotenoids—their resonance raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 32(6):12–20

    Google Scholar 

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5):1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP (2014) 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397(7):2693–2701

    Article  CAS  PubMed  Google Scholar 

  • Babu B, Knox G, Paret ML, Ochoa-Corona FM (2018) Rose rosette disease: recent advances on molecular diagnostic tools. HortScience 53(5):596–600

    Article  CAS  Google Scholar 

  • Byrne DH, Klein P, Yan M, Young E, Lau J, Ong K, Shires M, Olson J, Windham M, Evans T (2018) Challenges of breeding rose rosette–resistant roses. HortScience 53(5):604–608

    Article  Google Scholar 

  • Cantarero A (2015) Raman scattering applied to materials science. Procedia Mater Sci 9(Supplement C):113–122

    Article  CAS  Google Scholar 

  • Cao Y, Shen D, Lu Y, Huang J (2006) A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot 97:1091–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Census of Horticultural Specialties (2014) (2015) 2012 census of agriculture, vol 3. United States Department of Agriculture, Washington

    Google Scholar 

  • Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  • Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Devitt G, Howard K, Mudher A, Mahajan S (2018) Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chem Neurosci 9(3):404–420

    Article  CAS  PubMed  Google Scholar 

  • Di Bello P, Thekke-Veetil T, Druciarek T, Tzanetakis I (2018) Transmission attributes and resistance to rose rosette virus. Plant Pathol 67(2):499–504

    Article  Google Scholar 

  • Edwards HG, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53(13):2383–2392

    Article  Google Scholar 

  • Egging V, Nguyen J, Kurouski D (2018) Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held raman spectrometer. Anal Chem 90(14):8616–8621

    Article  CAS  PubMed  Google Scholar 

  • Eriksson L, Byrne T, Johansson E, Trygg J, Vikstrom C (2013) Multi- and megavariate data analysis basic principles and applications, 3rd edn. Umetrics, Malmö

    Google Scholar 

  • Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90(5):3009–3012

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Wang K, Li X, Zou B (2016) High pressure structural investigation of benzoic acid: Raman spectroscopy and X-ray diffraction. J Phys Chem C 120(27):14758–14766

    Article  CAS  Google Scholar 

  • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  • Kurouski D, Van Duyne RP (2015) In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal Chem 87(5):2901–2906

    Article  CAS  PubMed  Google Scholar 

  • Laney AG, Keller KE, Martin RR, Tzanetakis IE (2011) A discovery 70 years in the making: characterization of the Rose rosette virus. J Gen Virol 92(7):1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  CAS  PubMed Central  Google Scholar 

  • Mary YS, Panicker CY, Varghese HT (2012) Vibrational spectroscopic investigations of 4-nitropyrocatechol. Orient J Chem 28(2):937–941

    Article  CAS  Google Scholar 

  • Pemberton HB, Ong K, Windham M, Olson J, Byrne DH (2018) What is rose rosette disease? HortScience 53(5):592–595

    Article  CAS  Google Scholar 

  • Sanchez L, Farber C, Lei J, Zhu-Salzman K, Kurouski D (2019a) Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem 91:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Pant S, Xing Z, Mandadi K, Kurouski D (2019b) Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411:3125–3133

    Article  CAS  PubMed  Google Scholar 

  • Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77(4):212–221

    Article  CAS  PubMed  Google Scholar 

  • Shires M, Ueckert J, Ong K (2018) Rose rosette virus: effective and low-cost extraction method. In: Paper presented at the ASHS Annual Conference, Washington, D.C

  • Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • The Family (2019) Star roses and plants. https://www.knockoutroses.com/family/ Accessed February 11 2019

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virkler K, Lednev IK (2009) Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci Int 193(1–3):56–62

    Article  CAS  PubMed  Google Scholar 

  • Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A 185:317–335

    Article  CAS  Google Scholar 

  • Yeturu S, Vargas Jentzsch P, Ciobotă V, Guerrero R, Garrido P, Ramos LA (2016) Handheld Raman spectroscopy for the early detection of plant diseases: abutilon mosaic virus infecting Abutilon sp. Anal Methods 8(17):3450–3457

    Article  CAS  Google Scholar 

  • Yu MM, Schulze HG, Jetter R, Blades MW, Turner RF (2007) Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl Spectrosc 61(1):32–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Agrilife Research at Texas A&M and acknowledge the Governor’s University Research Initiative (GURI) grant program of Texas A&M, GURI Grant Agreement No. 12-2016, M1700437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kurouski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2019_3216_MOESM1_ESM.docx

Additional supporting information may be found in the online version of this article at the publisher’s website. It contains four supplemental figures. (DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farber, C., Shires, M., Ong, K. et al. Raman spectroscopy as an early detection tool for rose rosette infection. Planta 250, 1247–1254 (2019). https://doi.org/10.1007/s00425-019-03216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03216-0

Keywords

Navigation