Skip to main content

Advertisement

Log in

Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function.

To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CMV:

Cucumber mosaic virus

EMSA:

Electrophoretic mobility shift assay

ESR:

Endogenous suppressor of RNA silencing

GD:

Glycine-rich domain

GRP:

Glycine-rich RNA-binding protein

PVX:

Potato virus X

RBP:

RNA-binding protein

RIP:

RNA immunoprecipitation

RRM:

RNA recognition motif

RSS:

RNA-silencing suppressor

TMV:

Tobacco mosaic virus

VSR:

Viral suppressor of RNA silencing

References

  • Anandalakshmi R, Marathe R, Ge X, Herr J, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290(5489):142–144

    Article  CAS  PubMed  Google Scholar 

  • Aneeta Sanan-Mishra N, Tuteja N, Kumar Sopory S (2002) Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem Biophys Res Commun 296(5):1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2002) Viral suppression of systemic silencing. Trends Microbiol 10(7):306–308

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  PubMed  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17(22):6739–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265(5172):615–621

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol 104(3):1015–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11(4):287–293

    Article  CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17(2):377–380

    CAS  PubMed  Google Scholar 

  • Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103

    Article  PubMed  CAS  Google Scholar 

  • Czolpinska M, Rurek M (2018) Plant glycine-rich proteins in stress response: an emerging, still prospective story. Front Plant Sci 9:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Daròs JA (2017) Viral suppressors: combatting RNA silencing. Nat Plants 3:17098

    Article  PubMed  Google Scholar 

  • Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, Pruss GJ, Ecker JR, Bowman LH, Vance V (2010) Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog 6(1):e1000729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang RX, Pang Z, Gao DM, Mang KQ, Chua NH (1991) cDNA sequence of a virus-inducible, glycine-rich protein gene from rice. Plant Mol Biol 17(6):1255–1257

    Article  CAS  PubMed  Google Scholar 

  • Ferullo JM, Vézina LP, Rail J, Laberge S, Nadeau P, Castonguay Y (1997) Differential accumulation of two glycine-rich proteins during cold-acclimation alfalfa. Plant Mol Biol 33(4):625–633

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447(7142):284–288

    Article  CAS  PubMed  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 306(5698):1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Gómez J, Sánchez-Martínez D, Stiefel V, Rigau J, Puigdomènech P, Pagès M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334(6179):262–264

    Article  PubMed  Google Scholar 

  • Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007) Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors. Plant Cell 19(11):3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27(15):2102–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J 22(17):4523–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877

    Article  PubMed  PubMed Central  Google Scholar 

  • Iki T, Tschopp MA, Voinnet O (2017) Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA 23(5):639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D (2011) Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 286(50):43272–43281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing XL, Fan MN, Jia G, Liu LW, Ma L, Zheng CC, Zhu XP, Liu HM, Wang XY (2011) A multifunctional protein encoded by Turkey herpesvirus suppresses RNA silencing in Nicotiana benthamiana. J Virol 85(23):12792–12803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Park SJ, Kwak KJ (2013) Plant RNA chaperones in stress response. Trends Plant Sci 18(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H (2014) Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Nucleic Acids Res 42(13):8705–8718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot 61(9):2317–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, López-Moya JJ, Burgyán J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25(12):2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MO, Kim KP, Kim BG, Hahn JS, Hong CB (2009) Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Mol Cells 27(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY, Kim YC, McSpadden Gardener B, Kang H (2012) Different roles of glycine-rich RNA-binding protein 7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol Biochem 60:46–52

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wang A (2018) RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog 14(8):e1007228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F, Huang C, Li Z, Zhou X (2014) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10(2):e1003921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichner Z, Silhavy D, Burgyán J (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J Gen Virol 84(4):975–980

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Lan J, Zhang Z (2007) Structure and function of the NS1 protein of influenza A virus. Acta Biochim Biophys Sin 39(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2005) The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition. EMBO Rep 6(12):1149–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linthorst HJ, van Loon LC, Memelink J, Bol JF (1990) Characterization of cDNA clones for a virus-inducible, glycine-rich protein from petunia. Plant Mol Biol 15(4):671

    Article  CAS  PubMed  Google Scholar 

  • Lorsch JR (2002) RNA chaperones exist and DEAD box proteins get a life. Cell 109(7):797–800

    Article  CAS  PubMed  Google Scholar 

  • May JP, Yuan X, Sawicki E, Simon AE (2018) RNA virus evasion of nonsense-mediated decay. PLoS Pathog 14(11):e1007459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80(12):5747–5756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D (2017) Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 18(1):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew RW, Uyeda I (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA 109(25):10113–10118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi SS, Park KS, Yi SY, Lee HW, Bok SH, Choi D (1998) A glycine-rich RNA-binding protein gene is differentially expressed during acute hypersensitive response following tobacco mosaic virus infection in tobacco. Plant Mol Biol 37(3):571–576

    Article  CAS  PubMed  Google Scholar 

  • Qi Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F (2010) A putative RNA-binding protein positively regulates salicylic acid–mediated immunity in Arabidopsis. Mol Plant Microbe Interact 23(12):1573–1583

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento C, Nigul L, Kazantseva J, Buschmann M, Truve E (2006) AtRLI2 is an endogenous suppressor of RNA silencing. Plant Mol Biol 61(1–2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Schöning JC, Streitner C, Meyer IM, Gao Y, Staiger D (2008) Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 36(22):6977–6987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D, Molnár A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyán J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21(12):3070–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Zecca L, Wieczorek Kirk DA, Apel K, Eckstein L (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 33(2):361–371

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Mack JW, Korge BP, Gan SQ, Haynes SR, Steven AC (1991) Glycine loops in proteins: their occurence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Bio Macromol 13(3):130–139

    Article  CAS  Google Scholar 

  • Susi P, Hohkuri M, Wahlroos T, Kilby NJ (2004) Characteristics of RNA silencing in plants: similarities and differences across kingdoms. Plant Mol Biol 54(2):157–174

    Article  CAS  PubMed  Google Scholar 

  • Tadamura K, Nakahara KS, Masuta C, Uyeda I (2012) Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection. Plant Signal Behav 7(12):1548–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Deve 19(5):517–529

    Article  CAS  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79(4):2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki S, Citovsky V (2002) The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol 4(7):478–486

    Article  CAS  PubMed  Google Scholar 

  • Valli A, Busnadiego I, Maliogka V, Ferrero D, Castón JR, Rodríguez JF, García JA (2012) The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes. PLoS One 7(9):e45957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kan JA, Cornelissen BJ, Bol JF (1988) A virus-inducible tobacco gene encoding a glycine-rich protein shares putative regulatory elements with the ribulose bisphosphate carboxylase small subunit gene. Mol Plant Microbe Interact 1(3):107–112

    Article  PubMed  Google Scholar 

  • Vargason JM, Szittya G, Burgyán J, Hall TM (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115(7):799–811

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103(1):157–167

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Li Y (2018) Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 32:88–99

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426(6968):874–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R, Jing X, Li W, Xu J, Xu Y, Geng L, Zhu C, Liu H (2018) Non-structural protein 1 from avian influenza virus H9N2 is an efficient RNA silencing suppressor with characteristics that differ from those of Tomato bushy stunt virus p19. Virus Genes 54(3):368–375

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Guo H (2017) mRNA decay in plants: both quantity and quality matter. Curr Opin Plant Biol 35:138–144

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhu Y, Liu X, Hong X, Xu Y, Zhu P, Shen Y, Wu H, Ji Y, Wen X (2015) Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 348(6230):120–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Baulcombe for providing P19, PVX vector, and N. benthamiana line 16c seeds. This work was supported by Shandong Provincial Natural Science Foundation, China [ZR2015CM018, ZR2018LC009], Genetically Modified Organisms Breeding Major Projects of China [2016ZX08001-002], Shandong Medical and Health Science and Technology Development Plan Project [2017WS426].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yu, R., Li, W. et al. Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa. Planta 249, 1811–1822 (2019). https://doi.org/10.1007/s00425-019-03122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03122-5

Keywords

Navigation