Skip to main content
Log in

Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins.

Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid–ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TRS:

Total reducing sugar

SEM:

Scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

PUFA:

Polyunsaturated fatty acid

BBM:

Bold Basal Medium

References

  • Aaronson S, Berner T, Dubinsky Z (1980) Microalgae as source of chemicals and natural products. In: Shelef G, Soeder CJ (eds) Algae Biomass: Production and Use, Elsevier/North Holland Biomedical Press, Amsterdam, pp 576–601

    Google Scholar 

  • Ahmed I, Zia MA, Hussain MA, Akram Z, Naveed MT, Nowrouzi A (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J Radiat Res Appl Sci 9(2):148–154

    Article  CAS  Google Scholar 

  • Amano H, Noda H (1990) Proteins from protoplasts from red alga Porphyra yezoensis. Nippon Suisan Gakkaishi 56:1859–1864

    Article  CAS  Google Scholar 

  • Andrews B, Asenjo J (1987) Enzymatic lysis and disruption of microbial cells. Trends Biotechnol 5(10):273–277

    Article  CAS  Google Scholar 

  • Anemaet IG, Bekker M, Hellingwerf KJ (2010) Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol 12(6):619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Agarwal A, Arya M, Ahmed Z (2011) Microalgae: a renewable source for second generation biofuels. Curr Sci 100(8):1141–1142

    CAS  Google Scholar 

  • Barrera DJ, Mayfield SP (2013) High-value recombinant protein production in microalgae. Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, New York, pp 532–544

  • Becker E (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Bewick D, Potter BA (1984) Chlorella: the emerald food. RoninPublishing, Berkeley

    Google Scholar 

  • Bisalputra T, Weier T (1963) The cell wall of Scenedesmus quadricauda. American J Bot 50:1011–1019

    Article  CAS  Google Scholar 

  • Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29

    Article  CAS  PubMed  Google Scholar 

  • Braun-Galleani S, Baganz F, Purton S (2015) Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnol J 10(8):1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlew JS (1953) Current status of the large-scale culture of algae. Algal culture from laboratory to pilot plant Carnegie Institute of Washington Publication 600:3–23

  • Cariquist S (1956) On the occurrence of intracellular pecticwarts in compositae. Am J Bot 43:425–429

    Article  Google Scholar 

  • Ceci L, Lozano J (1998) Determination of enzymatic activities of commercial pectinases for the clarification of apple juice. Food Chem 61(1):237–241

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microbial Technol 8(4):194–204

    Article  CAS  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47(4):551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Copikova J, Cerna M, Novotna M, Kaasova J, Synytsya A (2001) Application of FT-IR spectroscopy in detection of food hydrocolloids confectionery jellies and in food supplements. Czech J Food Sci 19(2):51–56

    CAS  Google Scholar 

  • Damásio ARdL, Maller A, Silva TMD, Jorge JA, Terenzi HF, Polizeli MdLTd (2011) Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Brazilian Arch Biol Technol 54(1):141–148

    Article  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Pt Rebers, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Dumay J, Clément N, Morançais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27

    Article  CAS  PubMed  Google Scholar 

  • Economou C, Wannathong T, Szaub J, Purton S (2014) A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii Methods. Mol Biol 1132:401–411

    Article  CAS  PubMed  Google Scholar 

  • Eldalatony MM, Kabra AN, Hwang J-H, Govindwar SP, Kim K-H, Kim H, Jeon B-H (2016) Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 39(1):95–103

    Article  CAS  PubMed  Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10(1):25–28

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Menéndez E, Marcos-García M, Celador-Lera L, Rivas R (2015) Calcofluor white, an alternative to propidium iodide for plant tissues staining in studies of root colonization by fluorescent-tagged rhizobia. J Adv Biol Biotechonol 2:65–70

    Article  Google Scholar 

  • Foster AS (1934) The use of tannic acid and iron chloride for staining cell walls in meristematic tissue. Stain Technol 9:91–92

    Article  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37(1):165–186

    Article  CAS  Google Scholar 

  • Fu C-C, Hung T-C, Chen J-Y, Su C-H, Wu W-T (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol 101(22):8750–8754

    Article  CAS  PubMed  Google Scholar 

  • Galat A (1980) Study of the Raman scattering and infrared absorption spectra of branched polysaccharides. Acta Biochim Pol 27(2):135–142

    CAS  PubMed  Google Scholar 

  • Gantar M, Svirčev Z (2008) Microalgae and cyanobacteria: food for thought1. J Phycol 44(2):260–268

    Article  PubMed  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237(1):239–253

    Article  CAS  PubMed  Google Scholar 

  • Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad SM (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12(3–5):325–330

    Article  Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24(6):1477–1486

    Article  CAS  Google Scholar 

  • Golding CG, Lamboo LL, Beniac DR, Booth TF (2016) The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516. doi:10.1038/srep26516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross R, Schoneberger H, Gross U, Lorenzen H (1982) The nutritional quality of Scenedesmus acutus produced in a semi-industrial plant in peru. Berichte der Deutschen Botanischen Gesellschaft 95(1):323–331

    Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168(3):1079–1084

    Article  CAS  Google Scholar 

  • Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 6(12):e28424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornatowska J (2005) Visualisation of pectins and proteins by microscopy. STFI-Packforsk report No. 87/2005

  • Huo S, Wang Z, Cui F, Zou B, Zhao P, Yuan Z (2015) Enzyme-assisted extraction of oil from wet microalgae Scenedesmus sp. G4. Energies 8(8):8165–8174

    Article  CAS  Google Scholar 

  • Ingesson H, Zacchi G, Yang B, Esteghlalian AR, Saddler JN (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J Biotechnol 88(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Kermanshahi-pour A, Sommer TJ, Anastas PT, Zimmerman JB (2014) Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresour Technol 173:415–421

    Article  CAS  PubMed  Google Scholar 

  • Kim D-Y, Vijayan D, Praveenkumar R, Han J-I, Lee K, Park J-Y, Chang W-S, Lee J-S, Oh Y-K (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Murdock JN, Wetzel DL (2009) FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectrosc Rev 44(4):335–361

    Article  CAS  Google Scholar 

  • Murdock JN, Dodds WK, Wetzel DL (2008) Subcellular localized chemical imaging of benthic algal nutritional content via HgCdTe array FT-IR. Vib Spectrosc 48(2):179–188

    Article  CAS  Google Scholar 

  • Neto AMP, de Souza RAS, Leon-Nino AD, da Costa JDAA, Tiburcio RS, Nunes TA, de Mello TCS, Kanemoto FT, Saldanha-Corrêa FMP, Gianesella SMF (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energy 55:525–531

    Article  Google Scholar 

  • Park J-Y, Lee K, Choi S-A, Jeong M-J, Kim B, Lee J-S, Oh Y-K (2015) Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renew Energy 79:3–8

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utln 3(4):89–100

    Google Scholar 

  • Rice E, Crowden R (1987) An improved method for the extraction and electrophoresis of proteins and active enzymes from fucalean macroalgae (Phaeophyta). Phycol 26(2):235–246

    Article  CAS  Google Scholar 

  • Saito K, Takakuwa N, Oda Y (2004) Purification of the extracellular pectinolytic enzyme from the fungus Rhizopus oryzae NBRC 4707. Microbiol Res 159(1):83–86

    Article  CAS  PubMed  Google Scholar 

  • Serot T, Courcoux P, Guillemineau F (1994) Extraction and partial characterization of protein from the green algae Ulva sp. Sciences des aliments 14(3):301–309

    CAS  Google Scholar 

  • Shuler MLKF (2002) Bioprocess engineering, 2nd edn. PrenticeHall, NJ

    Google Scholar 

  • Synytsya A, Čopiková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohyd Pol 54(1):97–106

    Article  CAS  Google Scholar 

  • Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 13(10):6152–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonshak A (1990) Recent advances in microalgal biotechnology. Biotechnol Adv 8(4):709–727

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yuan W, Jiang X, Jing Y, Wang Z (2014) Disruption of microalgal cells using high-frequency focused ultrasound. Bioresour Technol 153:315–321

    Article  CAS  PubMed  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res-Thessaloniki 21(1):1

    Article  Google Scholar 

  • Yoonan K, Kongkiattikajorn J (2005) A study of optimal conditions for reducing sugars production from cassava peels by diluted acid and enzymes. Kasetsart J Nat Sci 38:29–35

    Google Scholar 

Download references

Acknowledgements

The work was supported by the grant from Department of Science and Technology—SERB, Government of India through the project entitled “SERB/F/8404/2025-16: Bioprospecting of microalgal resources for nutritionally important high value lipid production” to Arumugam. We are also grateful to Dr. K.G. Raghu and Mr. Salin Raj for fluorescence imaging at Agro-processing and Technology division, Dr. Prabhakar Rao P and Mrs. Soumya for SEM imaging at Material science and technology division, Dr. Karunakaran and Dr. Kaustabh kumar Maiti at Chemical Sciences and Technology Division and Dr. Leena P Devendra, Mrs. Meena at Microbial Processes and Technology Division, CSIR—National Institute for Interdisciplinary Science and Technology Division (NIIST), Thiruvananthapuram, Kerala, India for FTIR analysis. Authors also thank Department of Biotechnology (DBT), New Delhi for giving financial support for doctoral programme of Reshma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Arumugam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshma, R., Arumugam, M. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202 . Planta 246, 779–790 (2017). https://doi.org/10.1007/s00425-017-2732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2732-6

Keywords

Navigation