Skip to main content
Log in

Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partially sufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions.

Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(+)-GR24:

(3aR,8bS,2′R)-GR24

APL:

Altered phloem development

MAX2:

More axilary growth2

hpg:

Hours post-germination

NST3 :

NAC secondary wall thickening promoting factor3

Pi:

Inorganic phosphate

PSI:

Phosphate-starvation induced genes

RH:

Root hair

SCR:

SCARECROW

SLs:

Strigolactones

WOX4 :

Wuschel-related homeobox4

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    Article  CAS  PubMed  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, 10.1007/s00425-016-2477-7 Sehr EM (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences 108 (50):20242–20247

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Bieleski R (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bromhead LJ, Visser J, McErlean CSP (2014) Enantioselective synthesis of the strigolactone mimic (+)-GR24. J Org Chem 79:1516–1520

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    Article  CAS  PubMed  Google Scholar 

  • Higaki T, Kutsuna N, Sano T, Hasezawa S (2008) Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol 8:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T-K, Han C-L, Lin S-I, Chen Y-J, Tsai Y-C, Chen Y-R, Chen J-W, Lin W-Y, Chen P-M, Liu T-Y, Chen Y-S, Sun C-M, Chiou T-J (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HMO, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltai H (2014) Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci 19:727–733

    Article  CAS  PubMed  Google Scholar 

  • Koren D, Resnick N, Gati EM, Belausov E, Weininger S, Kapulnik Y, Koltai H (2013) Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytol 198:866–874

    Article  CAS  PubMed  Google Scholar 

  • Koren D, Resnick N, Gati EM, Belausov E, Weininger S, Kapulnik Y, Koltai H (2013) Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytologist 198 (3):866–874

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Pandya-Kumar N, Dam A, Haor H, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, McErlean CS, Bromhead LJ (2015) Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. J Exp Bot 66:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W-Y, Huang T-K, Leong SJ, Chiou T-J (2014) Long-distance call from phosphate: systemic regulation of phosphate starvation responses. J Exp Bot 65:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacry P, Gv Canivenc, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito S, Park S-H (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  • Nick P, Han M-J, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151:155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu-Abied M, Kapulnik Y (2014) Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol 202:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  CAS  PubMed  Google Scholar 

  • Perez-Torres C-A, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Biol 50:665–693

    Article  CAS  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  PubMed  Google Scholar 

  • Seto Y, Yamaguchi S (2014) Strigolactone biosynthesis and perception. Curr Opin Plant Biol 21:1–6

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-Box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

OM is supported by a scholarship from The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinanit Koltai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Root-hair (RH) density (RH /1000μm) under high phosphate (Pi) conditions at 48 hpg of wild type (WT; Col-0), max2-1, max4-1 and lines expressing MORE AXILLARY GROWTH 2 (MAX2) under different tissue-specific promoters in max2-1 mutants, including SCR:MAX2 (40-5 and 90-1), NST3:MAX2 (73-2 and 39-2), APL:MAX2 (37-3 and 37-1) and WOX4:MAX2 (89-3 and 92-2; Agusti et al. 2011).SCR, SCARECROW; NST3, NAC SECONDARY WALL THICKENING PROMOTING FACTOR3; APL, ALTERED PHLOEM DEVELOPMENT; WOX4, WUSCHEL-RELATED HOMEOBOX4. Means ± SE are shown; n=60. No significant differences were detected between means by one-way analysis of variance (ANOVA) with Tukey–Kramer multiple comparison test (P< 0.01) (DOCX 13 kb)

Supplementary material 2

Effect of low phosphate (Pi) conditions and exogenous supplementation of GR24 on root-hair (RH) density (RH /1000μm) at 48 hpg of wild type (WT; Col-0), max2-1, max4-1 and lines expressing MORE AXILLARY GROWTH 2 (MAX2) under different tissue-specific promoters in max2-1 mutants, including SCR:MAX2 (40-5 and 90-1), NST3:MAX2 (73-2 and 39-2), APL:MAX2 (37-3 and 37-1) and WOX4:MAX2 (89-3 and 92-2; Agusti et al. 2011) (SCR, SCARECROW; NST3, NAC SECONDARY WALL THICKENING PROMOTING FACTOR3; APL, ALTERED PHLOEM DEVELOPMENT; WOX4, WUSCHEL-RELATED HOMEOBOX4). Grey bars, (±)-GR24-treated; Black bars, acetone (AC) control. Means ± SE are shown; n=60. Different letters above bars indicate statistically significant differences between means by one-way analysis of variance (ANOVA) with Tukey–Kramer multiple comparison test (P ≤ 0.05). Two-way ANOVA analysis revealed significance between treatments and Arabidopsis lines (P< 0.001) (PDF 244 kb)

Supplementary material 3

Examples for TALIN–GFP F-actin in the epidermal cells of the primary root elongation zone in 35S:TALIN–GFP roots of seedling grown under high (2 mM) and low (1 μM) Pi conditions (48 hpg). TALIN–GFP signal in Col-0 or max2-1 mutant (max2-1–28) or 40-5-10 line expressing MAX2 under the SCR tissue-specific promoter in max2-1 mutant, grown under high- or low-Pi conditions. Bars, 20 μm (PDF 250 kb)

Supplementary material 4

Examples for TALIN–GFP F-actin in the epidermal cells of the primary root elongation zone in 35S:TALIN–GFP roots of seedling grown under low (1 μM) Pi conditions (48 hpg), acetone control (AC) or with the addition of (+)-GR24 ((3aR,8bS,2′R)-GR24). TALIN–GFP signal in Col-0 or max2-1 mutant (max2-1–28) or 40-5-10 line expressing MAX2 under the SCR tissue-specific promoter in max2-1 mutant, grown under low-Pi conditions. Bars, 20 μm (PDF 529 kb)

Supplementary material 5

Examples for endosomal movement in the epidermal cells of the primary-root elongation zone in 35S:ARA7–GFP seedlings grown under high (2 mM) and low (1 μM) Pi conditions (48 hpg). ARA7–GFP signal in Col-0 or max2-1 mutant (max2-1–73) or 40-5-8 line expressing MAX2 under the SCR tissue-specific promoter in max2-1 mutant. Overlay of frame 1(green) on frame 5(+16 s, red), and on frame 9 (+29 s, blue) of ARA7. Bars, 10 μm (PDF 462 kb)

Supplementary material 6

Examples for endosomal movement in the epidermal cells of the primary-root elongation zone in 35S:ARA7–GFP seedlings grown under low (1 μM) Pi conditions (48 hpg), acetone control (AC) or with the addition of (+)-GR24 ((3aR,8bS,2′R)-GR24). ARA7–GFP signal in Col-0 or max2-1 mutant (max2-1–73) or 40-5-8 line expressing MAX2 under the SCR tissue-specific promoter in max2-1 mutant, grown under low-Pi conditions. Overlay of frame 1(green) on frame 5(+16 s, red), and onframe 9 (+29 s, blue) of ARA7. Bars, 10 μm (PDF 462 kb)

Supplementary material 7 (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madmon, O., Mazuz, M., Kumari, P. et al. Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions. Planta 243, 1419–1427 (2016). https://doi.org/10.1007/s00425-016-2477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2477-7

Keywords

Navigation